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Abstract
Throughout immeasurable time, microorganisms evolved and accumulated remarkable
physiological and functional heterogeneity, and now constitute the major reserve for genetic
diversity on earth. Using metagenomics, namely genetic material recovered directly from
environmental samples, this biogenetic diversification can be accessed without the need to cultivate
cells. Accordingly, microbial communities and their metagenomes, isolated from biotopes with high
turnover rates of recalcitrant biomass, such as lignocellulosic plant cell walls, have become a major
resource for bioprospecting; furthermore, this material is a major asset in the search for new
biocatalytics (enzymes) for various industrial processes, including the production of biofuels from
plant feedstocks. However, despite the contributions from metagenomics technologies consequent
upon the discovery of novel enzymes, this relatively new enterprise requires major improvements.
In this review, we compare function-based metagenome screening and sequence-based
metagenome data mining, discussing the advantages and limitations of both methods. We also
describe the unusual enzymes discovered via metagenomics approaches, and discuss the future
prospects for metagenome technologies.

Background
In recent years, biofuels have attracted great interest as an
alternative, renewable source of energy in the face of the
ongoing depletion of fossil fuels, our energy dependence
on them, and our growing environmental awareness of
the critical consequences of burning such fuels. Plant bio-
mass, the most abundant biopolymer on earth, has long
been recognized as a potential sustainable source of
mixed sugars for biofuel production. However, break-
through technologies are still needed to overcome the sev-
eral barriers to developing cost-effective processes for

converting biomass to fuels and chemicals [1]. As yet, we
have an incomplete understanding of the plant cell wall
and its deconstruction and conversion; considerable
research will be needed to better appreciate the funda-
mental and applied aspects of enzymatic hydrolysis and
microbial hydrolysis and/or fermentation of plant cell
walls.

Estimates suggest that approximately 4–6 × 1030 prokary-
otes inhabit the earth [2]. Being the oldest life form,
prokaryotic microorganisms have evolved and accumu-
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lated remarkable physiological and functional diversity,
thereby constituting the world's major reserve of genetic
diversity. Traditional methods to tap this information are
by cultivating the microorganisms, subsequently screen-
ing individual ones for the requisite phenotypes. How-
ever, about 95% to 99.9% of microorganisms have not
been cultured by standard laboratory techniques [3]. One
way to overcome this limitation is by improving cultiva-
tion-based methodologies [4,5].

As a cultivation independent approach, Pace and col-
leagues [6] proposed a way to isolate directly the collective
genomes from all microorganisms in a given habitat, and,
in 1991, Schmidt et al. [7] undertook the first metagen-
ome-based community characterization on amplified 16S
rRNA genes. The subsequent improvement of sequencing
technologies made feasible the metagenome shot-gun
sequencing of environmental samples; however, most
environmental communities are far too complex to be
fully sequenced in this manner. Initial attempts were
made to reconstruct the metagenomes of viral communi-
ties in the ocean and human feces [8-10], and subse-
quently of samples from the Sargasso Sea [11] and a
biofilm from an acid mine drainage (AMD) [12]. How-
ever, since most marine communities are far richer in spe-
cies diversity than the AMD biofilm, on the order of 100
to 200 species per milliliter of water [13,14], this further
complicated their sequencing and assembly. Soil commu-
nities are even more complex, with an estimated species
richness of about 4,000 species per gram of soil [13-15].
On the other hand, with recent developments in high-
throughput sequencing technologies, such as the 454
pyrosequencing (GS FLX Titanium Series, 454 Life Sci-
ence, Roche) partly mitigating this problem, metagenom-
ics is becoming an increasingly sophisticated approach to
the study of complex DNA samples directly isolated from
defined habitats [16]. According to the Genomes OnLine
Database (GOLD) [17] until January 2009, 137 metagen-
omics projects were in various stages of sequencing, 72%
of which were derived from environmental samples, 23%
from endobiotic samples, along with 5% synthetic
metagenomes. Forty-six of these projects were completed;
data are available on the website Integrated Microbial
Genomes with Microbiome Samples [18]

Here, we review some recent metagenomic approaches to
mining complex microbial communities, comprising
both cultivable and non-cultivable microorganisms, for
novel biocatalytic enzymes, such as glycosyl hydrolases
(GHase) for industrial uses and biofuel production. We
also discuss the advantages and limitations of the strate-
gies and tools developed for targeted screening, as well as
the future prospects of metagenomics in bioprospecting
for new enzymes.

Strategies for target-gene enrichment
In principle, directly isolating metagenomic DNA from
the environment implies unbiased genomic representa-
tion; however, biases are introduced during its isolation,
for example, resulting from differences in cell lyses. In
searching for relatively under-represented genes, enrich-
ment can increase the probability of their cloning, and
hasten the process of discovering new genes. By exposing
microbial communities to a selective pressure expected to
entail the enrichment of microorganisms displaying the
desired phenotypes (including substrate utilization, phys-
ical-, chemical-, and nutritional-selective conditions), the
numbers of those community members with the desired
phenotypes and corresponding target genes are success-
fully boosted. For example, using DNA isolated from
enrichment cultures grown on cellulose as their major car-
bon source increased from three- to four-fold the isolation
of GHase with cellulase activity from metagenome librar-
ies, compared with the isolates from libraries made
directly from total environmental DNA [19]. Also, we can
remove eukaryotic community members by size-selective
filtration, leaving behind enriched prokaryotic and
archaeal populations [11]. Other enrichment techniques
include stable isotope probing, affording a means to iso-
late microorganisms actively metabolizing the substrate
and undergoing replication [20,21], suppressive subtrac-
tive hybridization [22-24], differential expression analysis
[25], phage display, and affinity capture (reviewed by
Cowan et al. [26]).

Strategies for prospecting novel enzymes from 
metagenomes
Having isolated metagenomic DNA, two complementary
approaches can be used for prospecting novel enzymes
from it; function-based screening of expression libraries
and sequence-based gene searches. In the former, metage-
nomic expression libraries are constructed and screened
for target enzyme activities. For the latter, target genes are
cloned after being amplified from metagenomic DNA by
using polymerase chain reaction with conserved
sequences as primers; alternatively, they may be directly
discovered from metagenome sequence databases using
bioinformatics tools, subsequently amplified, and cloned
in the appropriate expression systems. Below, we detail
these two approaches.

Metagenome expression libraries (function-based screening)
Metagenome expression libraries are constructed by
inserting fragmented metagenomic DNA into expression
vectors based on plasmids, cosmids, fosmids, or phages,
after which gene expression is examined in a suitable host
system. The advantage of directly screening for enzymatic
activities from metagenome libraries is that researchers
access previously unknown genes and their encoded
enzymes. Furthermore, the sequences and enzyme activi-
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ties are functionally guaranteed. However, some potential
drawbacks compromise this approach. Thus, before a
clone correctly expresses an active enzyme, several
requirements must be met. First, when functional enzy-
matic activity depends on more than one genetic subunit,
the clone must contain the complete gene sequence, or
even a gene cluster. This problem can be resolved by
selecting suitable vector systems. For small target genes,
DNA fragment libraries with inserts between 2 and 10
kilobase (kb) are constructed in plasmids or Lambda
expression vectors, and then screened for enzyme expres-
sion. Larger gene clusters, preferentially necessitate expres-
sion libraries with inserts between 20 and 40 kb in
cosmids and fosmids, and up to 100 to 200 kb in bacterial
artificial chromosome vectors. Although common E. coli
host strains have relaxed requirements for promoter rec-
ognition and translation initiation, many genes from
environmental samples may not be expressed efficiently
in heterologous hosts due to differences in codon usage,
transcription and/or translation initiation signals, pro-
tein-folding elements, post-translational modifications,
such as glycosylation, or toxicity of the active enzyme.
This obstacle is overcome partly by selecting suitable vec-
tor systems containing apposite transcription and transla-
tion-initiation sequences, and using suitable expression
hosts, such as the E. coli Rosetta strains (Novagen, Madi-
son, Wisconsin, USA) that contain the tRNA genes for rare
amino acid codons [27], or co-expression of the chaper-
one proteins, such as GroES, GroEL, and heat-shock pro-
teins [28,29]. Alternatively, host systems such as insect
cells, the yeast Pichia pastoris, and bacterial hosts such as
Pseudomonas putida, Streptomyces lividans, or Bacillus subtilis
were suitably improved for heterologous gene expression
[30]. Furthermore, several modified function-based meth-
ods exist specifically for exploring metagenome libraries.
Thus, Uchiyama and colleagues [31] developed substrate-
induced gene-expression screening to rapidly identify
clones that can be induced by a target substrate and dis-
play catabolic gene expression, while metabolite-regu-
lated expression detects clones generating quorum-
sensing gene-inducing compounds [32].

Function-based metagenome library screening has uncov-
ered a wide range of biocatalysts. Here, we highlight sev-
eral published results that screened for polysaccharide
and plant cell wall biomass-degrading enzymes, most
belonging to GHase families. In most cases, colorimetric-
based analyses on agar plates employing dye-linked sub-
strates or reaction products staining were used for prelim-
inary screening. Candidate clones were then confirmed by
enzyme activity assays.

Amylases attract much industrial interest and are the focus
of many metagenome studies. Richardson et al. [33],
Voget et al. [34], Yun et al. [35], and Lämmle et al. [36]

detailed novel amylolytic enzyme activities from metage-
nome libraries; some of these enzymes were purified and
characterized [33,35]. Cellulose is nature's most abun-
dant biopolymer, and long has been recognized as a
potential source of sugars for biofuel production. Voget
and colleagues [37] obtained several cellulolytic clones by
functionally screening a soil metagenome library from
which they purified and characterized a cellulase. Rees et
al. [38] screened a lake water metagenome library and
retrieved four cellulolytic clones. From a metagenome
library representing the microbial community present in
the rabbit's cecum, several clones with cellulose activities
were revealed [39]. Functional screening of metagenome
libraries from extreme (high salinity and alkalinity) envi-
ronmental samples (soil from Soda Lake, California, and
lake sediments from Africa and Egypt) also disclosed cel-
lulolytic clones [19]. Cellulolytic enzymes isolated from
environments with extreme temperatures and pH values
are receiving a lot of interest as these enzymes are expected
to be better adapted to the conditions of industrial proc-
esses, such as the decomposition of recalcitrant plant cell
wall biomass into fermentable sugars.

Chitin, a compound of the fungal cell wall, is the second
most abundant natural biopolymer that is broken down
by chitinases. Cottrell et al. [40] acquired clones with chi-
tinase activities from metagenome libraries derived from
marine samples (filtrated from coastal sea water and estu-
arine water near the Delaware Bay). Hemicellulose con-
sists primarily of xylan and constitutes the second most
abundant polymer in plant biomass. Xylanase activities
were detected and expressed from metagenome libraries
representing the microbial communities of an insect gut
[41], and the waste water from a dairy farm [42].

The ester linkage between the 4-O-methyl-D-glucuronic
acid of glucuronoxylan and lignin alcohols is one type of
covalent linkage connecting lignin and hemicellulose in
plant cell walls. Esterases, which belong to the group of
carboxylester hydrolases, hydrolyze such linkages. Este-
rase activities were detected from metagenome libraries of
soil [43,44], lake water [38], drinking water [43], and the
micro flora from bovine rumen [45]. From these libraries,
clones with endo--1,4-glucanase activity and a clone
with cyclodextrinase activity were identified [45]. Agarases
are enzymes that liquefy agar by cleaving either the poly-
mer's -L-(1,3) linkage or its -D-(1,4) linkage. Voget et
al. [34] discovered six agarase genes in a soil metagenome
library. The same library yielded two clones with pectate
lyase activity, and one clone with 1,4--glucan branching
enzyme activity [34]. Table 1 summarizes the enzymes
discovered via function-based screening, their metagen-
ome origin, and the library types and sizes.
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Table 1: Recently identified plant biomass-degrading enzymes through metagenomic approaches (metagenome libraries screening for 
enzyme activity)

Enzyme name Metagenome DNA source Library vector Insert size Number of clones 
screened

Positive clones Reference

Agarase Soil from an unplanted field Cosmid 25–40 kb 1,523 12 clones 
(belong to six genes)

[34]

Amylase Environmental 
(US patent number 5,958,672)

Lambda 50,000 15 clones 
(belong to three 
enzymes)

[33]

Amylase Soil from an unplanted field Cosmid 25–40 kb 1,523 1 clone [34]

Amylase Soil from the junction of the 
groundwater table

Plasmid 2–7 kb 30,000 1 clone [35]

Amylase Soil and compost from the 
surface layer of a private 
garden

Plasmid 1.4–6.5 kb 31,967 38 clones [36]

Cellulase Various lake water samples 
from East Africa

Lambda 2–10 kb 114,000 4 clones [38]

Cellulase Soil from an unplanted field Cosmid 25–40 kb 1,523 1 clone [34,37]

Cellulase Soda lake sediments from 
Wadi el Natrun, Egypt

Lambda 2.0–5.5 kb 35,000 1 clone [19]

Cellulase A soda lake (Wadi el Natrun, 
Egypt) alkaline microcrystalline 
cellulose medium enrichment

Lambda 2–6 kb 37,000 1 clone [19]

Cellulase Rabbit cecum contents Cosmid 22–47 kb 32,500 11 clones 
(representing six 
genes)

[39]

Chitinase Coastal seawater outside the 
Delaware Bay

Lambda 1.8–4.2 kb 75,000 2 clones [40]

Chitinase Estuarine water inside the 
Delaware Bay

Lambda 5.0–6.1 kb 75,000 9 clones [40]

Cyclodextrinase Bovine rumen micro flora Lambda Average 5.5 kb 14,000 1 clone [45]

Endo--1,4- 
glucanase

Bovine rumen micro flora Lambda Average 5.5 kb 14,000 9 clones [45]

Esterase Various lake water samples 
from East Africa

Lambda 2–10 kb 130,000 2 clones [38]

Esterase Bovine rumen micro flora Lambda Average 5.5 kb 14,000 12 clones [45]

Esterase Crude oil springs 
contaminated soil

Cosmid 25–40 kb 2,500 1 clone [43]

Esterase Biofilms growing with a 
drinking water network

Cosmid 25–40 kb 1,600 1 clone [43]

Esterase Pools of various environmental 
soils

Fosmid 30–40 kb 60,000 1 clone [44]
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Metagenome sequencing (homology-based identification)
Sequence-based screening methods rely on known con-
served sequences, and cannot uncover non-homologous
enzymes. Therefore, the drawback of this 'closed
approach' is its failure to detect fundamentally different
'new' genes. However, unlike function-based methods, it
can disclose target genes, regardless of gene expression
and protein folding in the host, and irrespective of the
completeness of the target gene's sequence. The success of
this approach rests on meeting several conditions:

(1) The more complex the community, the larger must be
the sequencing effort. Here, the development of new
sequencing technology, such as the next-generation 454-
pyrosequencing, has changed the outcome. For instance,
one of the first metagenome projects was the exploration
of microbial communities in the drainage from acid
mines [12], wherein only three bacterial and three
archaeal lineages were detected. Nowadays, metagenome
projects using new sequencing technologies not only gen-
erate greater total base pair reads but also have more even
coverage of species within the community [17].

(2) While the metagenomic approach captures represent-
ative DNA samples from diverse organisms, many
sequence reads remain unassembled due to the variety of
sizes of the environmental genomes, and their abun-
dance. Therefore, a shift in focus emerged, from complete
metagenome sequencing to bulk sequencing of as many
possible genes and/or functions. In this latter approach,
where there is less need to assemble sequences into con-
tigs, the limiting factor becomes the lengths of the frag-
ments that can be obtained for high-throughput screening
and cloning. Ideally, the fragments must be long enough
to contain the full open reading frame for the functions of
interest. Accordingly, optimized 454 sequencing (approx-
imately 450 nucleotide (nt) sequence length) looks more
promising than extremely high-volume short-run (25 nt)
sequencing [46,47], but still has its limitations for down-
stream cloning and expression of genes like GHase that
vary in length from less than 1 kb to more than 20 kb.

Gene-finding tools, such as MetaGene, were demon-
strated to predict 90% of shotgun sequences [48].

(3) New bioinformatics tools are needed for data mining,
based not only on primary sequence homology but also
able to predict protein structures, putative catalytic sites,
and activities. With the betterment of protein classifica-
tion tools, models might be designed to correlate enzyme
mechanisms and protein folding. Based on this folding
and the creation of putative active sites, gene function can
be predicted [49-54]. We anticipate that soon sequence-
based metagenome databases searches combined with
bioinformatics tools will have a greater influence on min-
ing novel biocatalyst genes than function-based methods.

Several publications describe searching metagenome
sequence databases in prospecting for genes and their
enzymes that will be useful in biofuel production. For
example, in sequencing a metagenome library of hindgut
microbiota from the largest family of wood-feeding ter-
mites (Termitidae), Warnecke and colleagues [55] gener-
ated 71 million base pairs of sequence data. By detecting
complete domains using global alignment, they identified
more than 700 domains homologous to glycoside-hydro-
lase catalytic corresponding to 45 different carbohydrate-
active enzymes (CAZy) families [56], including a rich
diversity of putative cellulases and hemicellulases.
Schlüter and colleagues [57,58] sequenced, using 454-
pyrosequencing technology, a metagenome library of the
microbial community from the biogas fermenter of an
agricultural biogas plant. From among the 141 million
base pair sequences generated, bacteria that played domi-
nant roles in methanogenesis and gene-encoding cellulo-
lytic functions were identified from among the Clostridia
spp. [57,58]. In the near future, we anticipate more publi-
cations on mining novel biocatalysts using sequence-
based metagenome searches.

A survey of available metagenome databases
According to GOLD [17], of the 137 metagenomic
projects in the various stages of sequencing, 46 were fin-

Pectate lyase Soil from an unplanted field Cosmid 25–40 kb 1,523 2 clones [34]

Xylanase Insect gut 
(insects collected from various 
locations)

Lambda 3–6 kb 1,000,000 4 clones [41]

Xylanase Manure waste water from a 
dairy farm

Lambda 4–10 kb 5,000,000 1 clone [42]

1,4--glucan 
branching enzyme

Soil from an unplanted field Cosmid 25–40 kb 1,523 1 clone [34]

kb = kilobase

Table 1: Recently identified plant biomass-degrading enzymes through metagenomic approaches (metagenome libraries screening for 
enzyme activity) (Continued)
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ished (including 43 projects from 22 different environ-
mental samples and 3 simulated communities), and the
resulting data are available through the IMG/M website
[18,56]. By searching through the list of 'genes with Pfam'
(the protein family database) from every metagenome on
the IMG/M website, our group retrieved 4,874 glycosyl/
GHase homologues from these 46 completed metagen-
ome databases. Then, to gain better insight into the diver-
sity and representation of putative glycosyl hydrolases in
these metagenomes, we downloaded the databases of
translated sequences from all 43 environmental metagen-
ome projects, and blast-searched them against the CAZy
sequences for homologues of GHases (van der Lelie et al.,
unpublished data). As shown in Table 2, using an e value
< 10-40 as a cut-off threshold, we recognized 7,338 puta-
tive GHase homologues. The table also gives the metage-
nome size of each environmental sample, the number of
homologues, and the number of putative GHases found
per million base pairs. Generally, metagenome samples
taken from environments that are characterized by a
steady input and turnover of complex plant cell wall bio-
mass have an increased abundance of putative GHases:
the metagenomes from microbial communities derived
from termite, human, and mouse guts displayed more
putative GHase homologues (approximately 1.5% total
gene count) than those from other samples, such as
human oral microflora, uranium-contaminated ground-
water or Singapore air sample (approximately 0.3% total
gene count). Many of these metagenomic projects origi-
nally were targeted on different subjects, such as sulfate
reduction, metal tolerance or marine archaeal anaerobic
methane oxidation (denoted in descriptions of metagen-
ome sources in Table 2). Table 3 lists the five most abun-
dant GHase families for each environment (except the
marine archaeal anaerobic methane-oxidation commu-
nity that had only three GHase matches on 2.1 million
base pairs). In most metagenomes, GHase family 13 rep-
resents the most abundant family. Its known activities
include the following: -amylase; pullulanase; cyclomal-
todextrin glucanotransferase; cyclomaltodextrinase; treha-
lose-6-phosphate hydrolase; oligo--glucosidase;
maltogenic amylase; neopullulanase; -glucosidase; mal-
totetraose-forming -amylase; isoamylase; glucodextra-
nase; maltohexaose-forming -amylase; maltotriose-
forming -amylase; branching enzyme; trehalose syn-
thase; 4--glucanotransferase; maltopentaose-forming -
amylase; amylosucrase; sucrose phosphorylase; malto-oli-
gosyltrehalose trehalohydrolase; isomaltulose synthase;
and, amino acid transporter. The next most abundant is
GHase family 23 (lysozyme type G; peptidoglycan lyase;
also known in the literature as peptidoglycan lytic transg-
lycosylase). Additionally, we found that members of the
GHase family 2 (-galactosidase; -mannosidase; -glu-
curonidase; mannosylglycoprotein endo--mannosidase;
exo--glucosaminidase), and GHase family 3 (-glucosi-

dase; xylan 1,4--xylosidase; -N-acetylhexosaminidase;
glucan 1,3--glucosidase; glucan 1,4--glucosidase; exo-
1,3-1,4-glucanase; -L-arabinofuranosidase) are abun-
dant in most environments. In fact, GHase family 13 (also
known as the -amylase family) is the largest sequence-
based family of GHases, and encompasses several differ-
ent enzyme activities and substrate specificities acting on
-glycosidic bonds. This might be a reason why GHase
family 13 seemingly is the dominant family in most
metagenomes. Clearly, homology, enzyme activity, and
substrate specificity are not always well linked for GHases
of the same family, thereby highlighting one weak point
of homology-based screening for new GHase activities.
Better classification and functional prediction of GHases
should improve future bioprospecting of new ones for
biofuel production.

Future prospects
(i) Development of high through-put screening methods
Although the new ultra-fast sequencing technologies
quickly generate a remarkable number of target gene can-
didates, functional assays are still needed to confirm
them. Assays for protein function represent one of the
most reliable and irreplaceable tools for mining target
genes, and, therefore, developing high through-put func-
tional screening methods is a priority for reducing the
time exhausted in primary screening. Furthermore, such
future screening methods might valuably be combined
with other technologies, such as micro-arrays, biosensors,
or proteomics tools to accelerate the discovery of new bio-
catalyst genes.

(ii) Advances in bioinformatics tools
The metagenomics approach provided valuable insight
into a full range of microbial diversity in the environment,
regardless of their cultivability. However, the complexity
of microbial species, together with the limitations of the
technology to cover fully whole genome sequences of
every species present still pose a great challenge for
metagenome research. A few bioinformatics programs are
established for assembling and binning metagenome
sequences, for gene prediction and annotation, estimating
community composition, and data management (see
Kunin et al. [60] for review). In addition, the European
Union-funded 'MetaFunctions' project [61] also covers
the development of 'metagenomes Mapserver', a data-
mining system that correlates genetic patterns in genomes
and metagenomes with contextual environmental data.
Nevertheless, more innovative and sophisticated bioinfor-
matics tools must be devised to assure continued valuable
progress in the field of metagenomics.

Conclusion
With the depletion of fossil fuels and growing environ-
mental awareness, bioenergy production from renewable,
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Table 2: Glycosyl hydrolase homologues found in metagenome samples

Metagenome sourcea Genome size (bp) Gene countb Glycosyl hydrolase
matchesc

Glycosyl hydrolase
matches/total genes

(%)d

Matches/million base
pairsd

Marine archaeal anaerobic methane 
oxidation community (methane 
oxidation, sulfate reducer) [62]

2,116,255 2,332 3 0.13 1.42

Acid mine drainage (acidic, metal 
tolerance, pink biofilm) [12]

10,830,886 12,559 73 0.58 6.74

Human gut community (gut 
microbiome of human) [63]

36,304,498 46,503 705 1.52 19.42

Hypersaline mat (marine microbial 
communities) [64]

84,253,870 135,922 786 0.58 9.33

Lake Washington formaldehyde 
enrichment (13C-labeled 
formaldehyde; 13C-labeled DNA 
isolated by CsCl purification) [21]

57,622,063 89,729 397 0.44 6.89

Lake Washington formate 
enrichment (13C-labeled formate; 
13C-labeled DNA isolated by CsCl 
purification) [21]

17,570,569 28,700 114 0.40 6.49

Lake Washington methane 
enrichment (13C-labeled methane; 
13C-labeled DNA isolated by CsCl 
purification) [21]

52,164,993 81,076 428 0.53 8.20

Lake Washington methanol 
enrichment (13C-labeled methanol; 
13C-labeled DNA isolated by CsCl 
purification) [21]

50,245,961 77,229 373 0.49 7.42

Lake Washington methylamine 
enrichment (13C-labeled 
methylamine; 13C-labeled DNA 
isolated by CsCl purification) [21]

37,225,208 54,340 285 0.52 7.66

Mouse gut community (lean mouse) 
[65]

6,511,633 8,510 119 1.40 18.27

Mouse gut community (obese 
mouse) [65]

4,200,364 5,382 58 1.08 13.81

Olavius algarvensis microbiome delta 
(sulfate reducer, symbiont) [66]

19,918,898 15,092 41 0.27 2.06

Olavius algarvensis microbiome 
gamma (sulfate reducer, symbiont) 
[66]

9,964,793 6,026 16 0.27 1.61

Singapore air sample [67] 75,598,288 91,635 514 0.56 6.80

Sludge Australian Phrap assembly 
(phosphate removal) [68]

53,048,954 30,590 177 0.58 3.34

Sludge US Jazz assembly (phosphate 
removal) [68]

41,128,538 16,840 126 0.75 3.06
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non-food resources more and more enters into public
focus. The natural gene diversity and complexity found in
metagenomes is remarkable, affording us an ideal
resource for mining of novel biocatalytics that efficiently
break down recalcitrant plant biomass into fermentable
sugars for generating biofuels and other chemical com-
modities. With the development of new biotechnologies
and bioinformatics tools, our discovery of, and access to
novel enzymes via metagenomic approaches potentially
may significantly contribute to their future economical
production from renewable resources.
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