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Abstract
The sustainable production of biofuels will require the efficient utilization of lignocellulosic biomass.
A key barrier involves the creation of growth-inhibitory compounds by chemical pretreatment
steps, which ultimately reduce the efficiency of fermentative microbial biocatalysts. The primary
toxins include organic acids, furan derivatives, and phenolic compounds. Weak acids enter the cell
and dissociate, resulting in a drop in intracellular pH as well as various anion-specific effects on
metabolism. Furan derivatives, dehydration products of hexose and pentose sugars, have been
shown to hinder fermentative enzyme function. Phenolic compounds, formed from lignin, can
disrupt membranes and are hypothesized to interfere with the function of intracellular hydrophobic
targets. This review covers mechanisms of toxicity and tolerance for these compounds with a
specific focus on the important industrial organism Escherichia coli. Recent efforts to engineer E. coli
for improved tolerance to these toxins are also discussed.

Introduction
Governments around the world are calling for increased
production of renewable transportation fuels in light of
massive increases in energy consumption [1-5]. The
United States has mandated the production of 36 billion
gallons of biofuels by 2022, with even greater increases of
up to 60 billion gallons by 2030 proposed by the new
administration [1,6]. A major challenge is that current
production methods based on corn ethanol are limited to
10 to 15 billion gallons per year [7]. Moreover, corn etha-
nol has recently come under criticism for its potential to
increase greenhouse gas emissions when compared to fos-
sil fuels and negative impact on food markets [8-10].
These findings stipulate that new feedstocks and processes
capable of producing 20 to 50 billion gallons per year,
while not increasing greenhouse gas emissions, must be
responsibly developed and commercialized within the

next two decades. Biofuels derived from lignocellulosic
biomass hold promise for making up a significant fraction
of this market.

Lignocellulosic feedstocks, such as switchgrass, poplar,
and corn stover, provide greenhouse gas savings of 65 to
100% in comparison to petrol [11]. When land-use
changes are considered, cellulosic ethanol still has the
ability to reduce overall greenhouse gas emissions
depending on the source of biomass and associated land-
use change [8]. Feedstocks that do not require a substan-
tial change in land-use include crop and municipal
wastes, fall grass harvests, and algae [8]. Other potential
feedstocks include waste from pulp and paper mills, con-
struction debris, and animal manures [1]. These feed-
stocks are of extreme interest because they require no
additional land-use conversion [8].

Published: 15 October 2009

Biotechnology for Biofuels 2009, 2:26 doi:10.1186/1754-6834-2-26

Received: 25 June 2009
Accepted: 15 October 2009

This article is available from: http://www.biotechnologyforbiofuels.com/content/2/1/26

© 2009 Mills et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biotechnologyforbiofuels.com/content/2/1/26
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19832972
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Biotechnology for Biofuels 2009, 2:26 http://www.biotechnologyforbiofuels.com/content/2/1/26
Many processes exist and have been recently reviewed for
the pretreatment of lignocellulosic biomass to produce a
fermentable hydrolysate [12-16]. The overall goal of pre-
treatment is to better expose cellulose for downstream
hydrolysis, convert hemicellulose to pentoses, and to
remove lignin [13].

Harsh conditions used in pretreatment create a variety of
toxic compounds that inhibit the fermentation perform-
ance. Inhibitors have been categorized previously by Ols-
son and Hahn-Hägerdal [17]. Specifically, acetic acid is
released from acetylxylan decomposition, furan deriva-
tives result from sugar dehydration, and phenolic com-
pounds are derived from lignin. Furan derivatives include
2-furaldehyde (furfural) and 5-hydroxymethylfurfural
(HMF), which result from pentose and hexose dehydra-
tion, respectively [18,19]. Subsequent degradation of fur-
fural and HMF introduces formic acid and levulinic acid,
respectively, into the hydrolysate. Phenolic compounds of
interest include acids, alcohols, aldehydes, and ketones
[20]. Metallic cation levels have measurable variance
depending on the pretreatment method, but levels are low
enough to not significantly affect fermentation [21].

Although many fermentative microorganisms exist,
Escherichia coli, Saccharomyces cerevisiae, and Zymomonas
mobilis are the most promising industrial biocatalysts for
biofuels production [22]. Each microorganism has limita-
tions in native substrate utilization, production capacity,
or tolerance. Unlike S. cerevisiae or Z. mobilis, E. coli
natively ferments both hexose and pentose sugars. Eth-
anologenic E. coli also has higher tolerance to lignocellu-
losic inhibitors than its fermentative counterparts [23-25].
In 2007, Jarboe et al. [26] compared ethanol production
between these three microorganisms, determining that E.
coli is comparable with or surpasses other reported pro-
duction levels, despite its low membrane tolerance to eth-
anol. These qualities along with advanced knowledge
about the E. coli genome and regulation make this bacte-
rium a prime candidate for further development.

As depicted in Figure 1, generally accepted categories of
antimicrobial activity for inhibitors in lignocellulosic
hydrolysate include: compromising the cell membrane;
inhibiting essential enzymes; or negative interaction with
DNA or RNA [27-32]. These compounds often act by
inhibiting multiple targets. Although efforts are underway
to limit the amount and types of inhibitors created during
pretreatment, at the present time, economically viable
processes still fall short. Regardless of pretreatment opti-
mization, inhibitors such as acetic acid, released directly
from hemicellulose decomposition, will remain in the
hydrolysate. Thus, the need to engineer more tolerant fer-
mentative microorganisms exists. In this work, known
modes of toxicity and tolerance pertaining to E. coli and

lignocellulosic inhibitors will be reviewed, in addition to
new technologies that are aimed at engineering the bacte-
rium for fermentation of lignocellulosic biomass.

Organic acids
Organic acids derived from lignocellulosic biomass pre-
treatment and subsequent saccharification inhibit the
growth and metabolism of E. coli. This, in turn, reduces
the yield, titer, and productivity of biofuel fermentation.
Various organic acids are created in pretreatment steps:
acetic acid is derived from the hydrolysis of acetylxylan, a
main component of hemicellulose; others (formic, lev-
ulinic, and so on) are result from degraded sugars [33].

Acetic acid is usually found at the highest concentration in
the hydrolysate [34-40]. Levels of acetate depend on the
type of cellulosic biomass and the pretreatment method.
Concentrations typically range from 1 to >10 g/L in the
hydrolysate. Formic acid, while more toxic to E. coli than
acetic acid, is typically present at concentrations much less
than that of acetic acid (commonly a tenth of acetic acid
concentrations) [23,35,36]. Other toxic weak acids,
whose hydrolysate concentrations are rarely reported, are
present at an even lower concentration than formic acid
[35,37,38,41].

Modes of toxicity
Weak organic acids have been shown to primarily inhibit
the production of cell mass, but not the fermentation
itself [23]. Acetate is the most studied organic acid inhib-
itor in E. coli. Acetate is a natural fermentation product
that is known to accumulate due to 'overflow metabolism'
and inhibit cell growth. Acetate concentrations as low as
0.5 g/L have been shown to inhibit cell growth by 50% in
minimal media [42,43]. However, in E. coli KO11, con-
centrations of acetate up to 12 g/L did not significantly
affect ethanol yield, although ethanol titer decreased with
high levels of acetate [44]. Attempts have been made to
mathematically describe the relationship between growth
rate and acetate concentration, with varying results. Koh et
al. [45] proposed the following equation for specific
growth () in a batch reactor:

The value of the constant, k, ranged from 0.125 L/g to
0.366 L/g depending on the strain and media [45]. Luli
and Strohl [46] reported an exponential decay model of
inhibition:
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The value of the constant was calculated as 0.06 L/g of ace-
tate. In both shake flasks and a fermentor, Nakano et al.
[47] report a linear inhibition trend. Specific growth rates
in shake flasks were four times as low for any given con-
centration of acetate compared to the fermentor. This dif-
ference in toxicity was attributed to the controlled
dissolved oxygen in the fermentor. The IC50, the concen-
tration of acetate that inhibits growth by 50%, ranges

from 2.75 to 8 g/L depending on the strain and media
[23,45,46].

Weak acids in the undissociated form can permeate the
cell membrane, and, once inside, dissociate to release the
anion and the proton. These 'uncoupling agents' disrupt
the transmembrane pH potential since, effectively, a pro-
ton is allowed across the membrane without the creation

Hydrolysate inhibitorsFigure 1
Hydrolysate inhibitors. Lignocellulosic biomass is processed into component sugars, lignin solids, and inhibitory compounds. 
These inhibitors can affect microbial growth in various ways, including DNA mutation, membrane disruption, intracellular pH 
drop, and other cellular targets.
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of ATP [48]. This dissociation of the weak acid inside the
cytoplasm is due to the fact the intracellular pH, pHi, is
naturally at a pH of approximately 7.8, which is much
higher than the weak acid's pKa [42]. As these acids disso-
ciate inside the cell, the pHi decreases, which can inhibit
growth [42]. External pH has a large affect on the toxicity
of the weak acids. E. coli KO11 in LB media with 5.0 g/L
acetate reached an ethanol titer twice as fast at an initial
pH of 7.0 compared to initial pH of 6.0, and thrice as fast
compared to an initial pH of 5.5 [44]. When E. coli LY01
was subjected, at a starting pH of 6.0, to acetic, formic, or
levulinic acid at the IC50 obtained at a neutral pH, the
growth rate decreased to 0%, 35%, and 10%, respectively,
that of control growth [23]. Formic acid may be more
toxic due to the fact it has an extraordinarily high perme-
ability through the membrane [49]. This external pH
effect is due, in part, to the fact that the acid exists in its
undissociated form at higher concentrations, allowing for
higher permeation of the cell membrane.

The anion also has an inhibitory effect. The anion accu-
mulates inside the cell, which can affect the cell turgor
pressure [42]. Inhibition has been shown to be anion spe-
cific [23,42,43]. When E. coli inhibition from acetate was
compared to benzoate, the same growth rate was observed
for differing pHi (7.26 for benzoate and 7.48 for acetate)
[42]. Zaldivar and Ingram [23] reported that the toxicity
of weak acids depended highly on the hydrophobicity of
the acid.

The modes of toxicity of weak acids are not easily eluci-
dated. Formic and propionic acid have been shown to
inhibit the synthesis of macromolecules, as the cells stop
growing after addition of the acids [50]. More so than
other macromolecules, DNA synthesis was slowed [50].
DNA repair-deficient strains were shown to be more sen-
sitive to weak acids when tested in stationary phase [51].
However, repair deficient strains were not overly sensitive
to organic acids in growth phase [52]. This, plus the lack
of an observed SOS response, suggests that the DNA was
not damaged by these acids [52]. The hypothesis of mem-
brane disruption has also been investigated. Leakage of
cell contents in the presence of weak organic acids was
small when compared to the leakage associated with a
membrane disrupting antibiotic (polymyxin B) or even
ethanol, and thus is not likely to be the primary cause of
weak acid inhibition [23,53]. Weak acids have been
shown to reduce the intracellular pools of some amino
acids. Glutamate and aspartate, precursors to many differ-
ent amino acids, were shown to be at a significantly lower
concentration in the cytoplasm when E. coli was grown in
the presence of weak acid [42]. Glutamate has been
shown to be important during growth as a protective
osmolyte [54,55]. Lysine, arginine, glutamine, and
methionine were also found at lower concentrations

when incubated with weak acid [42,43]. The addition of
methionine to the incubation mixture has been shown to
alleviate much of the toxicity associated with acetate [43].

Modes of tolerance
E. coli acid resistance mechanisms are thought to increase
E. coli survival when passing through the low pH environ-
ment in the stomach. It has long been known that cells
can sense and regulate intracellular pH [56]. Also, it has
been shown that treatment of bacteria to moderately low
levels of pH (5.0) before exposure to very low pH (3.0 to
3.5) increases the tolerance more than 50-fold [57].

E. coli naturally has several known mechanisms to combat
acid stress. One mechanism for acid tolerance requires the
presence of an amino acid decarboxylase coupled with an
antiporter that exports the decarboxylated product and
imports the amino acid used [58-60]. It is widely thought
that the tolerance is due to the fact that the decarboxyla-
tion and antiporter reactions consume and export one
intracellular proton across the cell membrane. This raises
the pHi of the cell, which is beneficial for survival and
growth [58-62]. The transmembrane potential is also
affected by these acid resistance mechanisms. E. coli,
which normally has a negative transmembrane potential,
had a positive potential during acid stress when either the
arginine- or glutamine-dependent systems were activated.
This mimics what is seen in acidophiles [61]. These mech-
anisms of tolerance have also been reviewed and depicted
by Warnecke et al. [63].

All acid resistance mechanisms, however, are not equally
effective. The glutamate-dependent acid resistance mech-
anism is the most studied and the most robust, the
arginine-dependent mechanism provides a moderate
level of resistance, and the lysine-dependent mechanism
confers a minimal level of tolerance [59-62,64,65]. The
levels of tolerance are highly dependent on the strain,
treatment before shock, the media used, growth phase,
and the strength and length of acid stress [58-62,64,65].
The differences in efficacy between the mechanisms may
lie in the optimal pH for the amino acid decarboxylase.
The optimum pHs for the glutamate, arginine, and lysine
decarboxylases are 4, 5, and 5.7, respectively [61]. The
lower the optimal pH of the enzyme, the more efficient it
is during times of acid stress.

These acid resistance mechanisms have complicated regu-
lation. Low pH can induce heat and oxidative shock regu-
lons, genes coding for membrane-proteins, and acid
consumption [66]. It is known that the rpoS regulon is
induced by exposure to weak acids [64,67,68]. Once
induced, the rpoS response leads to higher survival rates at
low pH, oxidative stress, and heat stress [68]. However,
the rpoS response alone is not sufficient for acid tolerance.
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Cultures exposed to NaCl, which also induced the rpoS
response, failed to increase acid survival [68]. RpoS has
also been implicated in glutamine-dependent acid resist-
ance [62]. This system has been shown to have at least two
sigma factors (S and 70) and at least five regulatory pro-
teins (encoded by crp, ydeO, gadE, gadX, and gadW)
involved in the expression of the decarboxylases (gadA
and B) and the antiporter (gadC) [69-71].

Other modes of tolerance to weak acids are also known.
DNA stabilization via Dps protein interactions has been
shown to be beneficial at low pH [72]. Acetate treatment
was shown to increase expression of many other genes;
these genes are mostly involved in general metabolism of
the cell as well as in outer membrane protein production
[68]. In a genomic library selection with 3-hydroxyproi-
onic acid, genes coding for inner membrane proteins and
certain genes involved in cell metabolism were found to
be most enriched [73,74].

Furan derivatives
Furan derivatives are a result of sugar dehydration during
pretreatment. Furfural and HMF are the primary deriva-
tives appearing in lignocellulosic hydrolysate. Concentra-
tions typically range between 0 and 5 g/L for each
compound [20,21,75,76]. As previously mentioned, lev-
ulinic and formic acid are also formed via degradation of
these aldehydes [77]. While dilute acid hydrolysis is a
common method for pretreatment, acidic conditions are
known to cause dehydration of a small fraction of the
sugar monomers. Hemicellulose is the second most abun-
dant renewable polysaccharide, averaging 25 to 35% of
viable lignocellulosic biomass composition [78]. There-
fore, processes that avoid degradation of the C5 and C6
monomers are vital. While new methods are being devel-
oped to reduce the amount of furfural and HMF formed
during pretreatment [79-81], industrial-scale technology
and knowledge about process kinetics currently favors
more traditional processes like dilute sulfuric acid treat-
ment [34,82,83]. Therefore, it is important to improve
understanding of the genetic and metabolic mechanisms
underlying tolerance to furan derivatives.

Aldehydes in general are known to have detrimental
effects in microorganisms. For example, Haselkorn and
Doty [84] showed that formaldehyde denatures and inter-
acts with polynucleotides. Formaldehyde is also known to
cause protein-protein cross-linking [85]. In vitro experi-
ments with crude cell extracts identified a glutathione-
dependent formaldehyde dehydrogenase that is responsi-
ble for conferring aldehyde tolerance [86]. Two previously
uncharacterized proteins, FrmB and YeiG, have also been
identified for their role in conferring folrmaldehyde toler-
ance via a glutathione-dependent formaldehyde hydroly-
sis pathway [87]. Besides enzymatic detoxification, outer

membrane protein composition has also been indicated
as conferring increased tolerance to formaldehyde, acety-
laldehyde, and glutaraldehyde [88]. Furthermore, methyl-
gloxal, a dicarbonyl compound, has been shown to
inhibit E. coli growth and protein synthesis at concentra-
tions of 0.07 g/L [89,90]. We will focus here on the two
primary aldehyde compounds found in the hydrolysate,
furfural and HMF.

Modes of toxicity
Furfural has been identified as a key inhibitor in lignocel-
lulosic hydrolysate because it is toxic by itself and also acts
synergistically with other inhibitors [24]. Hydrophobicity
is a marker of an organic compound's toxicity. Highly
hydrophobic compounds have been shown to compro-
mise membrane integrity [29]. Interestingly, perceptible
membrane damage in E. coli resulting from furfural expo-
sure has not been observed, despite a known log(Poctanol/

water) value of 0.41 [24]. Intracellular sites are more likely
to be the primary inhibition targets of furfural and HMF.
In contrast, both 2-furoic acid and furfuryl alcohol have
been shown to cause significant membrane leakage
[23,25]. Furfuryl alcohol also exhibits synergism when in
binary combinations with other inhibitors, while 2-furoic
acid results in additive toxicity [23,24].

Ethanol production is inhibited in E. coli LYO1 by fur-
fural, suggesting a direct effect on glycotic and/or fermen-
tative enzymes [24]. Glycotic dehydrogenases like alcohol
dehydrogenase (ADH) have been indicated as a potential
site of inhibition via NAD(P)H-dependent aldehyde
reduction into the corresponding alcohol [27]. A study
performed in vitro has confirmed that acetaldehyde to eth-
anol conversion was inhibited by both furfural and HMF
[91]. Subsequent in vitro enzymatic assays in this study
demonstrated that furfural was a substrate for ADH (EC
1.1.1.1), albeit at a five-fold increase in Km and five-fold
decrease in Vmax. In the same study, furfural inhibition on
aldehyde dehydrogenase (EC 1.2.1.5) and the pyruvate
dehydrogenase complex were investigated and deter-
mined to be more significant than ADH, as indicated by
more than 80% activity reduction in the presence of 0.12
g/L furfural, whereas ADH activity was only inhibited by
60%. These findings suggest that furfural may detrimen-
tally affect multiple glycotic enzymes essential to central
metabolism.

Furfural and HMF have shown cytotoxic characteristics
towards both bacteria and yeast [24,92-94]. Furfural is a
known dietary mutagen and has been under investigation
for direct effects on DNA in the past. A series of studies by
Hadi and coworkers confirmed that furfural-DNA interac-
tions occur. Furfural-treated double-stranded DNA led to
single-strand breaks after undergoing in vitro incubation
with furfural, primarily at sequence sites with three or
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more adenine or thymine bases [28,32]. Later, plasmids
treated with furfural were observed to cause either an
increase (high furfural concentrations) or decrease (low
furfural concentrations) in plasmid size via insertions,
duplications, or deletions [30].

Modes of tolerance
Although furfural damages DNA, cells with necessary
DNA repair mechanisms still maintain viability. Despite
the mutagenic interaction of furfural with DNA as previ-
ously stated, in vivo experimentation suggests the impor-
tance of the polA-mediated DNA repair pathway for
tolerating scissions caused by furfural [31]. Cells have
been observed to repair damaged DNA, reducing the fre-
quency of furfural-induced mutagenic events to that of
random mutation found in untreated cultures [95].

Recombinant E. coli has been shown to metabolize fur-
fural into furfuryl alcohol under aerobic conditions [96].
The bioconversion is thought to occur via a NADPH-
dependent furfural reductase, which is the first of its kind
to be reported in the class of alcohol-aldehyde oxidore-
ductases [97]. In the same study, the furfural reductase
showed an increased rate of NADPH oxidation when act-
ing on benzaldehyde compared to furfural, suggesting
that it can utilize a variety of aldehydes as substrates.

Conversely, a recent long-course adaptation experiment
with ethanologenic E. coli found that furfural tolerance is
conferred by silencing certain NADPH-dependent oxiore-
ductases [98]. Genes of special interest in this work were
yqhD and dkgA, both of which encode gene products with
low Kms for NADPH, allowing for biosynthetic reaction
competition. Miller et al. [98] propose that competition
exists between furfural reduction and biosynthesis by
observing that cells initially undergo a lag phase, consist-
ent with decreased biosynthesis, as the NADPH pool is
devoted to furfural reduction. The mutant with silenced
yqhD and dkgA genes was able to concurrently reduce fur-
fural and grow, providing further support for the pro-
posed claim. YqhD is also reported to play an important
role in protecting E. coli from aldehydes derived from
lipid-peroxidation via a glutathione-independent,
NADPH-dependent reduction mechanism [99]. Interest-
ing to note is that the mutant obtained from this study
also overexpressed eight oxioreductases that can use
NADPH as an electron donor. For example, the product of
one such gene, yajO, is highly specific for utilizing 2-car-
boxybenzaldehyde as a substrate in comparison to a vari-
ety of other aldehydes [100]. Further studies should be
performed on these isolated oxioreducatases for a variety
of substrates to explore the interplay between them and
the detrimental effects of cellular utilization of NADPH
for aldehyde reduction because NADH- and NADPH-
dependent reduction of furan derivatives has proved par-

amount for hydrolysate inhibitor tolerance in S. cerevisiae
and Pichia stipitis [101-105].

E. coli K12 mutants are also capable of converting furfural
to 2-furoic acid, a weak acid that can form at low levels
during pretreatment [106,107]. This acid inhibits growth
at concentrations as low as 0.5 g/L [23,24]. Interestingly,
these E. coli K12 mutants were shown to metabolize 2-
furoic acid and furfuryl alcohol as sole carbon sources
[108]. Isolated mutants from this study revealed benefi-
cial mutations in atoC and fadR, genes related to transcrip-
tional activation and regulation of fatty acid metabolism
[109,110]. The mechanism relating fatty acid metabolism
with furfural metabolism has not yet been determined.

Phenolic compounds
Hydrolysates can contain up to 30% lignin content for a
variety of feedstocks [83,92]. Major phenolic compounds
have carboxyl, formyl, or hydroxyl group functionalities
and arise from degradation of lignin during pretreatment.
Ketones can also be released during pretreatment, but are
not generally considered as primary inhibitors because
they occur at low concentrations (<0.05 g/L) and are also
partially or completely removed with various detoxifica-
tion treatments [20]. Most of the lignin and its derivatives
are insoluble; after dilute acid pretreatment of yellow pop-
lar, no more than 15% of the total lignin feedstock con-
tent was converted to a soluble species [33,92].
Concentrations of aromatic monomers after dilute acid
washes have been measured at between 0 and 3 g/L and
include acids, alcohols, and aldehydes [20,111,112]. Due
to the number of lignin-derived compounds needing to
be analyzed, sequential studies with E. coli have been lim-
ited. As such, only the most commonly studied com-
pounds are reviewed in this work.

Modes of toxicity
A series of studies comparing aldehydes, acids, and alco-
hols appearing in hydrolysate were performed with the
ethanologenic E. coli LYO1 [23-25]. In general, the degree
of toxicity correlated with the compound's octanol/water
partition coefficient, log(Poctanol/water), which is a measure
of hydrophobicity. In all studies the phenolics were more
toxic than aliphatics or furans with the same functional
group. This observation that hydrophobicity was related
to membrane damage was only true for the alcohols
tested, with the exception of hydroquinone. Aromatic
acids caused partial membrane leakage while the aromatic
aldehydes caused no significant membrane damage. A
synergistic binary combination was observed for guaiacol
and methylcatechol, but a less than additive combination
was observed for vanillyl alcohol and all lignin-derived
alcohols tested (catechol, coniferyl, guaiacol, hydroqui-
none, and methylcatechol). Vanillin, a phenolic alde-
hyde, was found to be bacteriostatic and membrane
Page 6 of 11
(page number not for citation purposes)



Biotechnology for Biofuels 2009, 2:26 http://www.biotechnologyforbiofuels.com/content/2/1/26
active, thus causing partial disruption of K+ gradients in E.
coli MC1022 [113]. This finding is similar to the effect of
methylglyoxal on E. coli [114]. Membrane destabilization
was experienced by 29% of the population after treatment
with vanillin for 1 hour at over three times the minimum
inhibitory concentration, but restored to 13% when
grown overnight [113]. In addition, this study showed
that ATP production continues without significant inter-
ruption. In previous reports, membrane damage was
found to not contribute significantly to toxicity [24]. From
these data, hypotheses have been developed stating that
other cellular hydrophobic components may be the pri-
mary target for inhibition [24,113].

Modes of tolerance
From the studies conducted on E. coli LYO1, only toler-
ance to aldehydes benefited from increased inoculum
size, suggesting metabolism of the compounds [23-25].
Similar to findings on furan derivatives, microbial metab-
olism of phenolic aldehydes is supported by previous
findings in recombinant E. coli, the closely related enteric
bacterium Klebsiella pneumonia, and S. cerevisiae [97,115-
117]. Furthermore, recombinant E. coli are capable of con-
verting aromatic aldehydes to their corresponding acids
[118]. Non-lignin derived aromatic acids have also been
shown to be metabolized as sole carbon sources, similar
to observations of furfural and HMF metabolism [108].
Conversion of an aldehyde to carboxylic acid or alcohol is
often beneficial for E. coli due to the reduced toxicity of
the functional group [23-25]. To date, tolerance to phe-
nolic compounds has not been adequately studied for
Gram-negative prokaryotes. A recent study on S. cerevisiae
identified genes required for vanillin tolerance, but these
genes are categorized for chromatin remodeling and vesi-
cle transport functionalities, which does not readily lend
itself to application for E. coli [119].

Engineering tolerance
Engineering tolerance to hydrolysate byproducts is an
attractive method for improving lignocellulosic biomass
based biofuel production in E. coli. Several methodologies
have been used for this purpose. The conventional
approach is to perform long-course adaptation studies.
This method has been used to generate the ethanologenic
E. coli LY01 strain. Over a 3-month period, E. coli KO11
was grown recursively in ethanol-containing media and
plated on chloramphenicol-containing solid media (on
which large colonies indicated good ethanol production)
[120]. The LY01 strain showed 50% relative growth rate
() at 30 g/L ethanol where the parent KO11 showed 50%
relative growth rate () in 20 g/L [24]. The resultant E. coli
LY01 strain was not only more tolerant to ethanol than
KO11, but showed a decreased sensitivity to toxic alde-
hydes as well [24]. Gonzalez et al. [121] showed expres-
sion levels of genes involved in protective osmolytes,

antibiotic resistance proteins, and cell envelope compo-
nents were significantly different in LY01 and KO11.
Using chemical mutagens can, over a short period of time,
achieve similar results as long-course adaptation. Ran-
domly mutating E. coli using nitrosoguanidine mutagene-
sis has been used to increase the complete inhibition
concentration of vanillin from 3 to 4 g/L [122].

Genomic library selection is a powerful tool that can dis-
cover genes or operons that, with increased copy number,
confer a desired phenotype. The advent of DNA microar-
rays has made it easier to identify these beneficial genes.
SCALEs (Scalar Analysis of Library Enrichments), and its
predecessor PGTM (Parallel Gene Trait Mapping), have
used E. coli genomic library selection and microarrays to
engineer tolerance to Pine-Sol antibiotic, antimetabolites,
3-hydroxypropionic acid, and naphthol [73,123-126].
Genomic selections employing libraries of heterologous
genes have also been used to engineer tolerance. A
genomic library of Sphingomonas sp. 14DN61 was used in
E. coli to find the PhnN enzyme, which converts aromatic
aldehydes, such as vanillin, to their milder corresponding
carboxylic acid [118]. Other methods of creating tolerant
strains include engineering sigma factors, which alter the
transcription of the cell. Global transcription machinery
engineering utilizes random mutagenesis of sigma factor
genes to create libraries of mutated sigma factors. These
mutants are then selected for improved tolerance. As a
proof of concept, a 40% increase in growth rate at 40 g/L
ethanol tolerance was reported [127]. Also, mutants
found after global transcription machinery engineering
selection using high levels of acetate (30 g/L) increased
growth rate () by a factor of five [128].

Rational designing of E. coli to better cope with toxins in
hydrolysate has yielded mixed results. After determining
methionine biosynthesis was being inhibited in the pres-
ence of acetate, Roe et al. [43] overexpressed the metE
gene, which converts homocysteine to methionine, and
the glyA gene, which is necessary for 5N-methyltetrahy-
drofolate regeneration (a part of methionine synthesis).
However, no decrease in acetate sensitivity was found
with either clone. Heterologous cloning of potentially
beneficial genes has also been attempted. Aldehyde oxi-
doreductase from a Nocardia species reduces aromatic car-
boxylic acids to the corresponding aldehydes, which are
then natively converted to the milder corresponding alco-
hol. This gene was cloned in to E. coli, but a 50-fold lower
specific activity was seen [129]. When incubated with a
cofactor and the Nocardia sp. post-translation enzyme,
heterologous expression gave a specific activity 20-fold
higher than before [129]. In another effort, Pseudomonas
putida benzaldehyde dehydrogenase was cloned into E.
coli. Coupled with a NahR reporter system, catalytically
active enzyme was selected for using a tet-based host
Page 7 of 11
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[130]. The fungus Coniochaeta ligniaria was found by selec-
tion of various microorganisms sampled from soil in
media containing furfural and HMF. It was later shown to
degrade both furfural and HMF [79]. The genes responsi-
ble for such degradation may be attractive metabolic engi-
neering targets. In a novel fermentation strategy, Eiteman
et al. [131] propose using E. coli strains designed to be able
to use only one substrate as a carbon source. In a two-part
fermentation, a strain designed to consume only acetate
acts first, then, the detoxified hydrolysate would undergo
simultaneous fermentation by a glucose-consuming strain
and a xylose-consuming strain [131,132].

Conclusion
Biofuels production must find cost-effective and sustaina-
ble feedstocks. The commercial potential of biofuels
largely depends on the abundance and cost of the feed-
stock. From 2000 to 2007, global biofuel production tri-
pled, but is still only 3% of the global transportation
energy [133]. As this number grows, commercial proc-
esses will necessarily rely more heavily upon lignocellu-
losic biomass. Much work is still required to improve the
efficiency of fermentations of biomass hydrolysate to lev-
els cost competitive with fermentation of pure sugar
streams. Emphasis should be placed upon not only fur-
ther reducing the cost of the enzymatic hydrolysis step but
also upon better understanding of hydrolysate toxicity
mechanisms and methods for engineering tolerance.
More specifically, elucidating the modes of action of spe-
cific compounds present in hydrolysate will prove critical
since the levels of inhibition of various aldehydes and
weak acids can vary greatly. It is for this reason that new
technologies must emerge in order to more rapidly deci-
pher toxicity and tolerance phenotypes. Once such under-
standing is generated, processes involving fermentation of
lignocelluosic hydrolysates that meet and surpass the pro-
ductivity of sugar-based bioprocesses will be enabled.
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