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Abstract

Background: Use of crude ligninase of bacterial origin is one of the most promising ways to improve the practical
biodegradation of lignocellulosic biomass. However, lignin is composed of diverse monolignols with different
abundance levels in different plant biomass and requires different proportions of ligninase to realize efficient
degradation. To improve activity and reduce cost, the simultaneous submerged fermentation of laccase and lignin
peroxidase (LiP) from a new bacterial strain, Streptomyces cinnamomensis, was studied by adopting formulation
design, principal component analysis, regression analysis and unconstrained mathematical programming.

Results: The activities of laccase and LiP from S. cinnamomensis cultured with the optimal medium formulations
were improved to be five to eight folders of their initial activities, and the measured laccase:LiP activity ratios
reached 0.1, 0.4 and 1.7 when cultured on medium with formulations designed to produce laccase:LiP complexes
with theoretical laccase:LiP activity ratios of 0.05 to 0.1, 0.5 to 1 and 1.1 to 2.

Conclusion: Both the laccase and LiP activities and also the activity ratio of laccase to LiP could be controlled by
the medium formulation as designed. Using a crude laccase-LiP complex with a specially designed laccase:LiP
activity ratio has the potential to improve the degradation of various plant lignins composed of diverse
monolignols with different abundance levels.

Background
Lignocellulose degradation is the central process for car-
bon recycling in land ecosystems [1]. As the key step in
lignocellulose decay, lignin degradation, removal or
modification is the rate-limiting step of carbon recycling
[1,2], and also the central issue for industrial utilization
of plant biomass (for example, biofuel production from
abundant and renewable lignocellulosic material) [3,4].
Compared with the lignocellulosic biomass degradation
by fungi, in vitro treatment of such biomass by lignin-
degrading enzymes has a number of advantages, such as
shorter incubation period without bacterial growth,
reduced possibility of infection during large-scale
microbe culture, lack of inhibitory effect of toxic bypro-
ducts (such as furfural) on bacterial or fungal mycelial
growth, and improved reaction efficiency of bacterial
enzymes at higher temperatures [1,5]. However, lack of

commercially available, robust, and inexpensive enzymes
is a major barrier for the widespread application of lig-
ninolytic enzymes in various industrial sectors [5,6]. To
avoid the high costs associated with enzyme purification
procedures, one of the most promising ways to promote
lignin biodegradation is to use crude enzymes [5-8].
Lignin is composed of chemically distinct subunits or

monolignols (such as p-hydroxyphenyl, guaiacyl, and
syringyl) whose abundance or proportions vary among
plant species, and lignins of different plant origins
require different proportions of laccase (E.C. 1.10.3.2),
lignin peroxidase (LiP; E.C. 1.11.1.14) or manganese per-
oxidase, (MnP; E.C. 1.11.1.13) to promote the efficiency
of degradation [2,3,9,10]. Laccase is the most preferred
ligninase enzyme [11], but can directly oxidize only phe-
nolic lignin units [12-14], which usually comprise less
than 10% of the total polymer content of natural lignin
[1,12]. By contrast, LiP is the most effective oxidizer lig-
ninase known to date, and is capable of catalyzing the* Correspondence: jingdb1@hotmail.com
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oxidation of phenolic or non-phenolic compounds, aro-
matic amines, aromatic ethers, and polycyclic aromatic
hydrocarbons [13,14]. Thus, a laccase-LiP complex can
be expected to be more efficient at lignin degradation
than either of the two ligninases alone, owing to their
potential synergism [5,6]. Further, laccases of fungal ori-
gin have low activity and stability at alkaline pH range
or at high temperature, whereas laccases of bacterial ori-
gin have higher activity and stability under the same
conditions [10,15]. One of the most studied aerobic cel-
lulolytic bacteria species, Streptomyces, can produce lig-
ninase with promising application potential under
extreme conditions of high temperatures or high pH
ranges [5,10,15].
Generally, strain selection or improvement by genetic

modification, optimization of medium formulation, and
fermentation conditions are the main options to
improve enzyme activity and reduce production cost
[5,6,10,15]. Compared with the high cost and uncertain
results of genetic engineering, optimization of the med-
ium formulation (including medium ingredients or com-
position, nutrient limitation, removal of potential toxic
inducers) and culture conditions is a more dependable
method in regulating the production of ligninolytic
enzyme [5,16]. Carbon and nitrogen are the two most
important components of the nutritional medium for
any fermentation process [17,18], thus modifying or
altering either or both in the medium should provide a
marked improvement in the production of extracellular
ligninolytic enzymes [10,18].
Currently, the most efficient method for large-scale

fermentation is submerged fermentation (SmF; that is,
an agitated liquid culture) [10]. Traditionally, production
of ligninolytic enzyme by SmF usually has a higher pro-
duction cost because the liquid media usually contains
some relatively expensive constituents such as glucose,
ammonium tartrate, nitriloacetic acid, MgSO4, NaCl,
FeSO4, CoCl2, and ZnSO4 [19]. To decrease production
cost, a potential solution is to adopt less expensive nat-
ural substrates as opposed to a chemically defined med-
ium [20]. Coffee pulp, wheat bran, and yeast extract
have been shown to be excellent substrates (nitrogen
sources) for Streptomyces psammoticus to produce lac-
case by either SmF [21] or solid-state fermentation
(SSF) [7]. Urea and sawdust have been used as nitrogen
and carbon sources for laccase production from Pycno-
porus sanguineus by SSF [22] and Lentinula edodes by
SmF [23], respectively.
In this study, we aimed to produce a high activity lac-

case-LiP complex from a new strain of Streptomyces cin-
namomensis by SmF using low cost liquid medium
composed of yeast extract, coffee pulp, wheat bran, saw-
dust and urea.

Results and discussion
Principal component analysis
Laccase and LiP were simultaneously produced from S.
cinnamomensis by SmF (Table 1).
Following principal component analysis (PCA), four

principal components of F1, F2, F3, F4 were calculated as
shown in equations 1 to 4 below:

F1 = 0.381 + 0.01778× (yeast extract) + 0.0792× (coffee pulp)

+0.462× (wheat bran)− 0.920× (sawdust)
(1)

F2 = −0.578− 0.0264× (yeast extract) + 1.046× (coffee pulp)

−0.344× (wheat bran)− 0.0692× (sawdust)
(2)

F3 = −4.403 + 0.928× (yeast extract) + 1.040× (coffee pulp)

+1.387× (wheat bran) + 1.047× (sawdust)
(3)

F4 = −0.459 + 1.073× (yeast extract)− 0.116× (coffee pulp)

−0.367× (wheat bran)− 0.110× (sawdust)
(4)

The explained variances in F1, F2, F3, F4 were 28.649%,
25.610%, 24.721% and 20.661% respectively, and their
cumulative percentage of variance reached 99.641%.

Regression analysis and mathematical programming
Using linear regression, two second-degree polynomial
regression models of laccase and LiP activities were
constructed with four principal components (F1 to F4)
as variables, as shown in equations 5 and 6 below:

Laccase = 0.01617 + 0.002399× F2 − 0.00337

×F3 − 0.00179× F4 − 0.00258× F21 − 0.00410

×F22 − 0.00460× F23 − 0.00313× F24(0.929, 0.191)

(5)

LiP = 0.106 + 0.02944× F2 − 0.0290

×F3 + 0.004978× F4 − 0.0144× F21 − 0.0470

×F22 − 0.00910× F23 − 0.0294× F24(0.978, 0.108)

(6)

Using unconstrained mathematical programming, the
maximal enzyme activities and their corresponding solu-
tions to principal components were calculated (Table 2).
Based on the relationship between the principal compo-
nent and the initial variables (yeast extract, coffee pulp,
wheat bran and sawdust) presented in equations 2 to 4,
the optimal dosages to the five medium ingredients cor-
responding to the maximum laccase or LiP activity
could also be calculated (Table 2).

Design of verification experiment
For ligninolytic enzyme production, the types and con-
centrations of the carbon and nitrogen sources and the
carbon:nitrogen ratio were shown to be key factors
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influencing extracellular laccase or peroxidase produc-
tion from Penicillium chrysogenum [24], Streptomyces
sp. F2621 and F6616 [16], Streptomyces viridosporus
[25], Streptomyces albus [26], Botryosphaeria rhodina
[27], Pleurotus ostreatus and Pleurotus sajorcaju [28],
and Streptomyces lavendulae [5].
To verify the effect of the medium formulation on lac-

case and LiP activities and their activity ratio (laccase:
LiP), three new medium formulations with different the-
oretical laccase:LiP activity ratios were designed (equa-
tions 7 to 9). For greater accuracy, the difference in
variations (adjusted R2) and significance levels of the
regression models of Equations. 5 and 6 were taken into
account and quoted as parameters when designing the
new medium formulations with different laccase:LiP
activity ratios.

0.1 laccase:1 LiP =
0.1× Lac× 0.929

0.191
+ 1× LiP× 0.978

0.108

0.1× 0.929
0.191

+ 1× 0.978
0.108

= 0.1014 + 0.02806

×F2 − 0.02769× F3 + 0.004633× F4 − 0.01380× F21 − 0.04481

×F22 − 0.008870× F23 − 0.02806× F24

(7)

1 laccase:1 LiP =
1× Lac× 0.929

0.191
+ 1× LiP× 0.978

0.108

1× 0.929
0.191

+ 1× 0.978
0.108

= 0.07461 + 0.01999

×F2 − 0.02004× F3 + 0.002613× F4 − 0.01027× F21 − 0.03201

×F22 − 0.007530× F23 − 0.02022× F24

(8)

2 laccase:1 LiP =
2× Lac× 0.929

0.191
+ 1× LiP× 0.978

0.108

2× 0.929
0.191

+ 1× 0.978
0.108

= 0.05948 + 0.01544

×F2 − 0.01573× F3 + 0.001473× F4 − 0.008280× F21 − 0.02478

×F22 − 0.006770× F23 − 0.01549× F24

(9)

After unconstrained programming, the theoretical
solutions to these three equations were calculated
(Table 3).

Result of verification
For the verification experiment using SmF culture at 25°
C with shaking at 150 rpm (Table 4), on the 14th day of
SmF with the optimal medium (w/v) of yeast extract
1.24%, coffee pulp 2.3%, wheat bran 1.46%, sawdust
1.78% and urea 3.22% (from Eqn 5) (Table 2; Table 4),
laccase from S. cinnamomensis reached a peak of 0.0175
U/mL, which was approximately 5.1 times activity of the
initial average value of 0.0034 U/mL (Table 1) and a lit-
tle higher than the expected peak of 0.0174 U/mL
(Table 2). This validated that laccase activity could be
controlled by medium nutrition, and the optimized
medium formulation was reliable for laccase production.
After 7 days of SmF culture using the optimal liquid

medium (w/v) of yeast extract 1.48%, coffee pulp 1.94%,

Table 1 Simultaneous production of laccase and lignin peroxidase (LiP) from Streptomyces cinnamomensis by
submerged fermentation

Run Medium ingredients, ga Activity, U/mL

Yeast extract Coffee pulp Wheat bran Urea Sawdust Laccaseb LiPb

1 2.57 0.84 0.60 0.71 0.28 0.0004 0.0032

2 1.81 0.19 0.26 0.76 1.98 0.0023 0.0092

3 1.37 0.75 2.20 0.26 0.42 0.0002 0.0093

4 1.05 2.44 0.23 0.64 0.64 0.0060 0.0009

5 0.80 0.43 2.23 1.45 0.09 0.0062 0.0070

6 0.58 0.67 0.82 0.16 2.77 0.0007 0.0033

7 0.39 1.24 0.09 2.73 0.55 0.0039 0.1240

8 0.22 2.15 1.24 0.23 1.16 0.0041 0.0015

9 0.07 0.09 1.42 2.09 1.33 0.0065 0.0001

Mean ± SD 0.98
± 0.81

0.98
± 0.83

1.01
± 0.82

1.00
± 0.90

1.02
± 0.88

0.0034
± 0.0026

0.0176
± 0.0400

aBasal medium for each run contained CaCO3 (0.02 g/L), MgSO4 (0.1 g/L) and trace element solution of 1%, with veratryl alcohol (sterilized using a 1 mmol/L
filter) as inducer.
bActivity on the day 10 of submerged fermentation.

Table 2 Solutions to the expected maxima of laccase and
lignin peroxidase (LiP) activities

Laccase LiP

Exp. max. activity 0.0174 0.1339

Component

F1 -4.500 × 10-8 -2.700 × 10-8

F2 0.2926 0.3132

F3 -0.3663 -1.5934

F4 -0.2859 0.0847

Ingredient

Yeast extract 0.62 0.74

Coffee pulp 1.15 0.97

Wheat bran 0.73 0.19

Sawdust 0.89 0.61

Ureaa 1.61 2.49

aUrea = 5 - (yeast extract) - (coffee pulp) - (wheat bran) - (sawdust).
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wheat bran 0.38%, sawdust 1.22% and urea 4.98% (Eqn
6; Table 2; Table 4), LiP from S. cinnamomensis reached
a peak of 0.1450 U/mL, which was approximately 8.2
times activity of the initial average value of 0.0176 U/
mL (Table 1) and higher than the expected peak of
0.1339 U/mL (Table 2). This confirmed that the LiP
activity could also be controlled by medium nutrition,
and the optimized medium formulation was reliable for
LiP production.
After 11 days of SmF culture using the three new

medium formulations designed to produce laccase-LiP
complexes with theoretical activity ratios of 0.0537 to
0.1 (Eqn 7), 0.537 to 1 (Eqn 8) and 1.074 to 2 (Eqn 9)

(Table 3; Table 4), the measured activity ratios of lac-
case:LiP from S. cinnamomensis reached 0.1, 0.41 and
1.7 respectively (Table 5). The three activity ratios of
laccase:LiP had nearly reached the designed levels of
0.05 to 0.1, 0.54 to 1 and 1.07 to 2 by day 11 of SmF
fermentation, suggesting that the activity ratio between
different enzymes produced simultaneously from one
strain had the potential to be directly controlled by
medium formulation. In addition, when the activity ratio
of laccase:LiP reached the expected levels on day 11 of
fermentation, the laccase or LiP activity also reached
peaks (Table 5) on days 10,11 or 12, implying that the
accordance of measured and theoretical laccase:LiP
activity ratio was a true result as designed.

Conclusions
Compared with strain improvement by genetic engineer-
ing [2], optimization of medium formulation is a low-
cost way to control enzyme activities and their ratio. By
adjusting medium formulation, we produced a crude
laccase-LiP complex with designed laccase:LiP activity
ratio specially for the degradation of species-specific
plant lignins with fixed proportion of phenolic units to
non-phenolic compounds. Using such specially designed
laccase-LiP complexes, the degradation of lignin and lig-
nocellulose biomass should be improved. By improving
the biodegradation of abundant and renewable lignocel-
lulosic biomass, laccase-LiP complex with specially
designed laccase:LiP activity ratio will be beneficial to
industrial processes.

Methods
Materials
The S. cinnamomensis strain used was obtained from
BOKU University of Natural Resources and Applied Life
Sciences (Vienna, Austria). Wheat bran and sawdust
were purchased, and coffee pulp was obtained from a

Table 4 Designed medium formulation for the verification experimenta by submerged fermentation of Streptomyces
cinnamomensis

Expected maximum activity Yeast extract Coffee pulp Wheat bran Sawdust Urea Total

Laccase 0.0174 0.62b (1.24%)g 1.15b (2.3%) 0.73b (1.46%) 0.89b (1.78%) 1.61b (3.22%) 5 (10%)

LiP 0.1339 0.74c (1.48%) 0.97c (1.94%) 0.19c (0.38%) 0.61c (1.22%) 2.49c (4.98%) 5 (10%)

Designed laccase:LiP ratio

0.1 laccase: 1 LiP - 0.74d 0.98d 0.20d 0.61d 2.47d 5

1 laccase: 1 LiP - 0.76e 1.01e 0.28e 0.66e 2.29e 5

2 laccase: 1 LiP - 0.77f 1.03f 0.35f 0.69f 2.16f 5
aSee Methods section for details.
bSolutions to max (laccase) in Table 2.
cSolutions to max (LiP) in Table 2.
dSolutions to max (0.1 × laccase + 1 × lLiP) in Table 3.
eSolutions to max (1 × llaccase + 1 × lLiP) in Table 3.
fSolutions to max (2 × llaccase + 1 × lLiP) in Table 3.
g1.24% = (0.62 g yeast extract)/(50 mL liquid medium) × 100%, the remaining percentage data in this table was calculated similarly.

Table 3 Theoretical solutions to medium formulations
designed to produce laccase-lignin peroxidase (LiP)
complexes with different laccase:LiP activity ratios

Designed laccase:LiP ratio

0.1 laccase: 1
LiPa

1 laccase: 1
LiPb

2 laccase: 1
LiPc

Component

F1 -7.800 × 10-8 -5.500 × 10-8 -5.400 × 10-8

F2 0.3131 0.3123 0.3115

F3 -1.5609 -1.3307 -1.1617

F4 0.0826 0.0646 0.0466

Ingredient

Yeast
extract

0.74 0.76 0.77

Coffee
pulp

0.98 1.01 1.03

Wheat
bran

0.2 0.28 0.35

Sawdust 0.61 0.66 0.69

Uread 2.47 2.29 2.16
aCorresponding to max (0.1 × laccase + 1 × LiP) = 0.1276.
bCorresponding to max (1 × laccase + 1 × LiP) = 0.0911.
cCorresponding to max (2 × laccase + 1 × LiP) = 0.0711.
dUrea = 5 - (yeast extract) - (coffee pulp) - (wheat bran) - (sawdust).
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common coffee machine in the Division of Food Bio-
technolgy, Department of Food Sciences and Technol-
ogy, BOKU - University of Natural Resources and
Applied Life Sciences , Austria.

Inoculum preparation
To prepare the inoculum, a growth medium composed
of 15 g/L malt extract, 15 g/L yeast extract, 0.5 g/L
(NH4)2SO4, 0.1 g/L CaCO3, 0.5 g/L MgSO4, and 0.5%
(v/v) trace element solution (1% FeSO4, 0.09% ZnSO4,
0.02% MnSO4 (w/v) and distilled water) in 250 mL
baffled flasks was autoclaved at 120°C for 20 minutes,
then inoculated with S. cinnamomensis slant. The flasks
were cultured at 25°C with shaking at 130 rpm for 3
days until spore concentration reached 1.5 × 107 col-
ony-forming units (CFU)/cm3.

Experimental design and fermentation
The medium for laccase and LiP production from S. cin-
namomensis by SmF (Table 1) was prepared in Erlenmeyer
flasks with veratryl alcohol as inducer [5,29]. After inocu-
lation with 10% (7.5 mL v/v) of bacterial cell suspension
containing 1.5 × 107 CFU/mL, 75 mL medium from each
run was cultured at were cultured at 25°C with shaking at
120 to 130 rpm.

Laccase activity assay
The laccase activity was determined by oxidation of 2,2’-
azino-bis(3-ethylthiazoline-6-sulfonate) (ABTS, Sigma
Chemical Co., St Louis, MO, USA) [5], with 1 U defined
as the amount of laccase oxidizing 1 μmol of ABTS per
minute [30].

Lignin peroxidase activity assay
LiP activity was determined spectrophotometrically [5],
with 1U of LiP activity defined as 1 μmol of veratryl
alcohol oxidized in 1 minute [5,19].

Spore concentration assay
Spore concentration was determined by measuring the
absorbance at 650 nm [5]. The control had the same
medium, but without inoculation.

Data analysis
To fully analyze the possible interaction among the
medium ingredients, a formulation design based on uni-
form design U9(3

9) was adopted to optimize the med-
ium formulation with five ingredients (Table 1).
Corresponding to this formulation design, a second-
degree polynomial regression model (Eqn 10) was con-
structed, with enzyme activity as the dependent variable
[31]. After PCA, four principal components (F1, F2, F3,
F4) corresponding to four ingredients (yeast extract, cof-
fee pulp, wheat bran, sawdust) were constructed. Using
unconstrained mathematical programming, the optimal
solutions to F1, F2, F3, F4 were calculated when the
dependents of enzyme activities reached maximum, then
the optimal dosages of the four ingredients (yeast
extract, coffee pulp, wheat bran, sawdust) could be cal-
culated, and finally the optimal medium formulation
could be fully calculated because the sum of five ingre-
dients in each run was 5, hence:

urea = 5− (yeast extract)− (coffee pulp)

−(wheat bran)− (sawdust).

Table 5 Measured activity ratios of laccase-LiP complexes produced from Streptomyces cinnamomensis by submerged
fermentation with optimized medium formulation

Day Treatment

0.1 laccase/1 LiP 1 laccase/1 LiP 2 laccase/1 LiP

Laccasea LiPa Laccase: LiP Laccasea LiPa Laccase: LiP Laccasea LiPa Laccase: LiP

6 0.0017 0.0016 1.1 0.0010 0.0058 0.17 0.0006 0.0035 0.2

7 0.0010 0.0052 0.19 0.0006 0.0077 0.1 0.0007 0.0020 0.4

8 0.0009 0.0069 0.1 0.0003 0.0009 0.3 0.0021 0.0044 0.48

9 0.0019 0.0037 0.51 0.0004 0.0073 0.05 0.0008 0.0002 4

10 0.0005 0.0032 0.2 0.0006 0.0056 0.1 0.0015 0.0074b 0.20

11 0.0007 0.0075 0.1c 0.0019 0.0046 0.41c 0.0045b 0.0026 1.7c

12 0.0002 0.0114b 0.02 0.0027b 0.0096b 0.28 0.0041 0.0040 1.0

13 0.0009 0.0055 0.2 0.0030 0.0058 0.52 0.0015 0.0025 0.60

Ranged 0.0537:1e to 0.1:1 0.537:1f to 1:1 1.074:1g to 2:1
aU/mL
bActivity peak of each enzyme produced using the designed medium.
cMeasured activity ratios of laccase/LiP produced using the designed medium.
dTheoretical scope of laccase:LiP.
e(0.100 × 0.929/0.191)/(1 × 0.978/0.108).
f(1 × 0.929/0.191)/(1 × 0.978/0.108).
g(2 × 0.929/0.191)/(1 × 0.978/0.108).
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The enzyme activity model could be constructed as
shown by Eqn 10:

y = β0 + β1 × F1 + β2 × F2 + β3 × F3 + β4 + F4 + β11 × F21 + β22

×F22 + β33 × F23 + β44 × F24(R
2, significance)

(10)

where y represents laccase or LiP activity; F1, F2, F3
and F4 were the principal components corresponding to
the four ingredients of yeast extract, coffee pulp, wheat
bran and sawdust in culture medium; bi was the partial
regression coefficient with b0, b1, b2, b3 being the linear
terms and b11, b22, b33, b44 being the quadratic terms.
R2 indicated to what extent of variability in the response
could be explained by statistical model, and significance
indicated the aptness of statistical model.

List of abbreviations
CFU: colony-forming unit; LiP: lignin peroxidase; PCA: principal component
analysis; SmF: submerged(/liquid) state fermentation; SSF: solid-state
(/substrate) fermentation.
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