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Abstract 

Background: Lignin is a natural polymer that is interwoven with cellulose and hemicellulose within plant cell walls. 
Due to this molecular arrangement, lignin is a major contributor to the recalcitrance of plant materials with respect to 
the extraction of sugars and their fermentation into ethanol, butanol, and other potential bioenergy crops. The lignin 
biosynthetic pathway is similar, but not identical in different plant species. It is in each case comprised of a moderate 
number of enzymatic steps, but its responses to manipulations, such as gene knock‑downs, are complicated by the 
fact that several of the key enzymes are involved in several reaction steps. This feature poses a challenge to bioenergy 
production, as it renders it difficult to select the most promising combinations of genetic manipulations for the opti‑
mization of lignin composition and amount.

Results: Here, we present several computational models than can aid in the analysis of data characterizing lignin 
biosynthesis. While minimizing technical details, we focus on the questions of what types of data are particularly use‑
ful for modeling and what genuine benefits the biofuel researcher may gain from the resulting models. We demon‑
strate our analysis with mathematical models for black cottonwood (Populus trichocarpa), alfalfa (Medicago truncatula), 
switchgrass (Panicum virgatum) and the grass Brachypodium distachyon.

Conclusions: Despite commonality in pathway structure, different plant species show different regulatory features 
and distinct spatial and topological characteristics. The putative lignin biosynthes pathway is not able to explain the 
plant specific laboratory data, and the necessity of plant specific modeling should be heeded.
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Background
The recalcitrance of woody plant materials to enzymatic 
fermentation is the result of numerous molecular processes 
and features. At its core is the phenolic polymer lignin, 
which is interwoven with cellulose and hemicellulose, and 
thereby impedes access of cellulolytic enzymes, necessitat-
ing costly physico-chemical pretreatments before effective 
microbial fermentation can take place. With the exception 
of cellulose, lignin is the most abundant terrestrial biopoly-
mer and accounts for roughly 30% of all organic carbon 

in the biosphere [1]. It gives a plant its structural stability, 
waterproofs the cell wall, thereby enabling water transport 
through the xylem, and protects the plant against patho-
gen threats. Lignin is an aromatic heteropolymer com-
posed mainly of three types of hydroxycinnamyl alcohol 
monomers, namely the monolignols p-coumaryl alcohol, 
coniferyl alcohol, and sinapyl alcohol, which are commonly 
called H-, G-, and S-lignin, respectively.

Both the amount and composition of lignin are thought 
to be correlated with the hardness as well as the recalci-
trance of structural plant materials. It is therefore impor-
tant to the production and manipulation of bioenergy 
crops to understand the details of lignin synthesis and 
the deposition and polymerization of monolignols in the 
plant cell wall. In particular, the question arises whether 
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it is possible and feasible to intervene in the phenyl-
propanoid pathway of lignin biosynthesis in a targeted 
and effective manner, for instance through gene knock-
downs. The answer to this question is evidently precon-
ditioned on detailed knowledge of this pathway and its 
control in situ. This knowledge in turn requires different 
types of biological data and, in cases where these are dif-
ficult to understand, the use of computational models 
that are capable of integrating small or large datasets of 
the same or different types and explaining observations 
that are sometimes unexpected.

In this article, we discuss computational models that are 
beneficial for explaining counterintuitive aspects of lignin 
biosynthesis and for making predictions regarding rational 
alterations in the molecular make-up of the pathway. We 
decided to present this material not in the form of a typi-
cal modeling paper, which would inform fellow modelers 
regarding all steps and technical details of model design, 
parameter estimation, methods of diagnostics and analysis, 
and interpretation of results. Instead, this paper is intended 
to address the practicing bioenergy scientist or engineer. It 
focuses on two overarching questions. First, what kinds and 
quantities of biological information are needed, or particu-
larly beneficial, for setting up models of lignin synthesis and 
recalcitrance that have explanatory or predictive power? 
And second, if we succeed in constructing and implement-
ing an effective model, what genuinely new insights might 
this model be able to offer? Guided by these questions, we 
will brush over most of the typical mathematical modeling 
steps and refer the reader to details in pertinent articles and 
reviews in the published literature.

It may surprise newcomers to the field of computational 
modeling that even within the limited scope of metabolic 
pathway modeling, the choices of mathematical formats 
and methods are all but unlimited. There is not “one” 
model that is somehow optimal, but there are many dis-
tinct options and numerous nuances. Even the represen-
tation of an enzyme catalyzed reaction can take a variety 
of mathematical formats, which are the result of different 
assumptions and focus either on molecular mechanisms 
or on the systemic behavior of a pathway system [2]. Stud-
ying these questions in detail, one comes to the conclu-
sion that the selection of a model should ultimately be 
driven by the available data and by the scientific questions 
that the model is supposed to answer [3].

Although the structure of the lignin polymer is rather 
similar among different plant species, targeted experi-
ments have revealed that the pathway of lignin biosyn-
thesis exhibits variations among these same plant species. 
These variations are primarily manifest in the presence 
or absence of some of the involved enzymes, secondarily 
in different enzyme activities and substrate affinities, and 
third in possibly different regulatory control structures. As 

an illustration, Fig. 1 overlays the pathways of lignin biosyn-
thesis in Populus trichocarpa (black cottonwood poplar), 
Medicago sativa (alfalfa), Panicum virgatum (switchgrass), 
and  the model  grass Brachypodium distachyon, as far as 
they are known or suspected today. A commonality among 
these species is that the pathway of lignin biosynthesis uses 
phenylalanine as its starting substrate; however, monocot 
grasses, including B. distachyon, and possibly P. virgatum 
as well, also use tyrosine, in addition to phenylalanine. It is 
presumably a biochemical necessity that most intermedi-
ates between these initial substrates and the final monol-
ignols are by and large preserved, but the pathway systems 
in the species are connected in a slightly different manner 
through enzymatic reactions. These differences are not 
only of academic interest to the evolutionary biologist, but 
also of great significance to the biofuel researcher, because 
targeted interventions are almost always based on specific 
changes in gene expression, with concomitant alterations in 
fluxes through enzymatic reaction steps, such that a precise 
understanding of the details of the metabolic system is a 
prerequisite for targeted manipulations.

Predicting global effects of such manipulations on the 
ultimate lignin output and composition is not trivial, 
because the pathway utilizes the same enzymes for dif-
ferent reaction steps, but presumably with different 
substrate affinities (Fig.  1). Furthermore, the pathway is 
regulated, and some reactions occur in different locations 
of the cell and some may form functional metabolic chan-
nels. Details of the latter insights were actually derived 
from computational models that demonstrated that the 
absence of these features was inconsistent with experi-
mental findings, as we will discuss later in this article.

Data needs for different modeling approaches 
and uses of model output
An ideal dataset
In an ideal modeling world, experimental teams would be 
able to measure every piece of information needed to create 
a comprehensive model. The data would be of high quality, 
obtained in situ, from the same species and from multiple 
organisms. Obviously, this high bar cannot often be reached, 
and one must ask instead what compromises are still suffi-
cient for modeling. We discuss this issue in the following.

To design and explore a model with computational 
methods, one needs to choose proper functional forms 
for the fluxes and determine their parameters. In a true 
mechanistic model, the mathematical format of a flux 
corresponds directly to the alleged biophysical or chemi-
cal mechanism, and typical parameters may be pH and 
temperature, and more specifically for metabolic mod-
els, may include quantities such as Vmax, KM, Kcat, or Ki, 
which correspond to rates and affinities in conceptual 
frameworks like the Michaelis–Menten mechanism.
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In an idealized modeling situation, two scenarios can 
lead to a full model. First, knowledge of all metabolite con-
centrations and of all mechanisms, including input to the 
system, along with a complete set of physical and kinetic 
parameters, measured in vivo, can quite easily be converted 
into a comprehensive model. However, even in this quite 
unrealistic case, the model would ignore the spatial distri-
bution of processes and stochastic events, which could, for 
instance, be due to environmental randomness or to very 
low numbers of enzyme or substrate molecules. Second, 
knowledge of all fluxes of the system and a complete set 
of measured physical parameters would allow the design 
of the model, again with the same limitation as before. At 
present, neither scenario is realistic, and missing informa-
tion must be obtained from other sources, such as in vitro 
measurements, or inferred through computational means.

At this point, many modeling approaches and methods 
are readily available that could create functioning models 

out of such data, if they were available. However, they are 
not, and the more important point therefore is to realign 
the existing modeling techniques with the realities of data 
acquisition in a field where some of the key metabolic 
intermediates are below the level of solid quantification.

As a premier example, flux balance analysis (FBA) [4] 
and its extensions are based on a mathematical frame-
work that allows assessments of the distribution of fluxes 
within a metabolic pathway at a steady state under the 
assumption of an alleged objective of the cell or organ-
ism, such as maximal growth, the maximal efflux of some 
metabolite, or the production of a compound like lignin. 
FBA formulates the operation of the pathway system as a 
so-called “linear programing problem” that optimizes the 
chosen objective, while satisfying biological constraints, 
such as non-negativity and maximal magnitudes of fluxes.

FBA is a computationally simple, yet powerful tool that 
has been widely used in many contexts, including plant 

Fig. 1 Putative lignin biosynthesis pathway with identification of species‑specific reactions. Generic reactions, mainly from studies in the model 
dicot Arabidopsis thaliana, are shown in grey. Other enzymatic reactions are color coded based on the plant species where they were documented. 
Multicolored arrows represent reactions present in more than one species. PAL phenylalanine ammonia‑lyase, TAL tyrosine ammonia‑lyase, C4H 
cinnamate 4‑hydroxylase, C3H p‑coumarate 3‑hydroxylase, C3′H p‑coumaroyl shikimate 3‑hydroxylase, COMT caffeic acid O‑methyltransferase, F5H 
ferulate 5‑hydroxylase, 4CL 4‑coumarate:CoA ligase, HCT hydroxycinnamoyl‑CoA:shikimate hydroxycinnamoyl transferase, CCoAOMT caffeoyl‑CoA 
O‑methyltransferase, CCR  cinnamoyl‑CoA reductase, CAD cinnamyl alcohol dehydrogenase, CSE caffeoyl shikimate esterase. Interestingly, some 
monocots, such as Brachypodium and maize, do not have CSE ortholog genes. Dashed arrows are currently considered less efficient metabolic 
reactions in vivo
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systems. For instance, in a plant context, Paez et  al. [5] 
analyzed biomass synthesis in Chlamydomonas rein-
hardtii under different  CO2 conditions, and Chang et al. 
[6] presented a genome-scale metabolic network model 
of the same organism. An interesting variation of FBA 
is the method of minimization of metabolic adjustment 
(MOMA) [7], which in a mutated organism tries to emu-
late a flux distribution that most closely mimics the wild 
type. Lee et  al. [8] used MOMA to analyze data from 
knock-down experiments with genes associated with 
lignin biosynthesis in alfalfa.

While FBA and MOMA  focus on the important dis-
tribution of fluxes at a steady state, dynamic modeling 
attempts to capture time-dependent changes in metabo-
lites following any sort of perturbation. The hope is not 
only to understand short-term responses better, but also 
to capture regulatory features of the pathway system that 
are likely to become critical when the system is mutated. 
Expressed differently, FBA by and large assumes that eve-
rything in the organism remains the same, except for the 
mutated process and its direct derivatives, although it is 
to be expected that the organism will attempt to regain 
normalcy upon such a perturbation by evoking compen-
satory mechanisms. Thus, dynamic modeling is in princi-
ple more powerful but requires much more data support.

In the following, we describe case studies addressing 
lignin biosynthesis in different plants and with different 
methods. As stated before, we will focus primarily on 
data needs and different model uses.

Models of lignin biosynthesis
Use of in vitro data
At present, metabolic modeling is far from having access 
to ideal comprehensive data obtained in  vivo. To over-
come this challenge, a common approach is the use of 
in vitro equivalents. An excellent example of this strategy 
in the context of lignin modeling is the work by Wang 
et  al. [9], who constructed a dynamic model based on 
kinetic reaction and inhibition parameters of pathway 
enzymes in the black cottonwood, Populus trichocarpa. 
The authors derived 189 kinetic parameters associated 
with generalized Michaelis–Menten mechanisms, pri-
marily in the form of Kcat, Km, and Ki of the 21 enzymes 
involved in monolignol biosynthesis. They also measured 
absolute enzyme quantities using mass spectrometry. 
Furthermore, the authors used a measured S/G ratio to 
quantify the input flux with a customized optimization 
algorithm. Such optimization methods are often needed 
in large-scale metabolic modeling, because the number of 
fluxes is typically greater than the number of metabolites, 
which creates a mathematical situation that cannot be 
directly solved. The information from their experiments 
allowed Wang’s team to construct a fully parameterized 

model with estimated input flux, which they formulated 
as ordinary differential equations (ODEs). They were able 
to obtain the steady-state flux distribution and to inves-
tigate the effects of enzyme perturbations on lignin con-
tent and composition.

In principle, the well-established strategy used by 
Wang’s team is excellent, as it leads to a fully dynamic 
model that permits explanations and predictions. The 
somewhat disconcerting issue is the use of in vitro data, 
which at present seems unavoidable, but leads to the fol-
lowing questions: (1) To what extent are in vitro data accu-
rate and representative of the pathway behavior in  vivo, 
and does enough in vivo information exist to validate the 
results of such models? In other words, it is unclear how 
to assess the reliability of these models. (2) It is clear that 
no biomathematical modeling effort can presently claim 
to have taken all components and modulators of a path-
way into account. Thus, is it possible to ensure that all rel-
evant information is present quantitatively to reproduce 
and explain in vivo observations? Or is it simply not fea-
sible to reconstruct the complex in vivo cell environment 
with sufficient reliability from in  vitro information? For 
example, Wang et al. did not include the enzyme caffeoyl 
shikimate esterase [10] in their poplar lignin model [9]; 
this enzyme was discovered as a new component in the 
lignin pathway while their studies were ongoing.

These concerns are not exaggerated and can even be 
found in a very detailed microbial investigation by Teu-
sink et  al. [11], which provides a good perspective in 
this regard based on the much simpler pathway system 
of glycolysis in baker’s yeast, Saccharomyces cerevisiae. 
Specifically, these authors compared in vivo flux and con-
centration profiles with the results of a computational 
model that had been constructed based on the best avail-
able kinetic parameters obtained in  vitro. Despite the 
authors’ dedicated efforts to use the same yeast source 
and obtain measurements under the same assay condi-
tions, the discrepancies between the model results and 
the observed in vivo behavior were alarming. For possible 
explanations, Teusink et  al. pointed to potential factors 
that may be active in  vivo and cause uncertainties that 
are almost impossible to implement in in  vitro models. 
Some of these uncertainties are apparently not adjust-
able by tuning of rate constants or through modifications 
in the model structure, but may be due to complicated 
combinations of molecular interactions between the 
pathway metabolites and enzymes or agents outside the 
investigated metabolic pathway. The authors proffered 
that these small details might have caused drastic differ-
ences during the integration of in vivo information into 
systemic models.

Similar concerns about in  vitro–in vivo extrapolations 
were voiced some while ago by Savageau and others [12, 
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13], while Albe and Wright and others came to the con-
clusion that such an extrapolation is, by and large, justi-
fied in many cases [14, 15]. In any case, these problems are 
disconcerting, as in vivo measurements are incomparably 
more difficult to perform than experiments in vitro. Then 
again, if it is only possible to obtain in vitro data, are there 
means of in vivo validation? It appears that a direct vali-
dation of individual process representations will be diffi-
cult. Thus, one must hope that different types of in vivo 
data may fill the gap as they are combined with models 
designed from in vitro data for more reliable results.

Use of limited in vivo data
Lignin synthesis in poplar At present, the total body of 
in vivo data is dwarfed by information obtained in vitro, 
and this situation is not likely to change any time soon. 
As a case in point here, the lignin pathway simply does 
not permit many concentration or flux measurements 
in vivo. Instead, the typical dataset that can reasonably be 
expected today consists of lignin content and composi-
tion under different conditions, possibly augmented with 
a few metabolite concentrations. Although this situation 
might seem to be quite dire for modeling, mathematical 
and computational approaches can still offer interesting 
results.

As a pertinent example, Lee and Voit [16] investi-
gated the lignin biosynthesis pathway in Populus xylem 
based on a relatively small set of data consisting of the 
S/G ratios and down-regulation levels of enzymes in five 
transgenic plants. In addition, the authors used infor-
mation regarding the pathway stoichiometry, regula-
tory information of five enzymes of the pathway, and an 
enzyme capacity measurement for COMT. Utilizing a 
predetermined lignin monomer composition as input 
and maximum lignin production as the cell’s alleged 
objective, the authors were able to generate steady-state 
flux distributions through FBA methods. Furthermore, 
to convert this information into a dynamic model, they 
employed a strategy derived from biochemical systems 
theory (BST) [17–21]. In this modeling framework, all 
fluxes are represented with power-law functions, so that 
the parameters can be coarsely estimated without knowl-
edge of direct measurements.

Once the model was fully parameterized, the authors 
were able to run simulations that ultimately reproduced 
the lignin composition in all measured transgenics. In 
fact, an entire ensemble of models was generated, rather 
than a single model with a unique set of parameter val-
ues. This ensemble of models was validated against two 
transgenics that had not been used to set up the model. 
Upon validation, an indirect optimization method [22] 
was implemented to propose enzyme profiles that were 

expected to lead to a minimal S/G ratio in order to mini-
mize recalcitrance. Single, double, and triple enzyme 
alterations were conducted to give insights and to deter-
mine the most effective perturbations. An interesting 
detail to note is that the best triple mutation did not 
contain the double mutation plus an additional muta-
tion, but a different set. Specifically, in comparison to 
the wild-type S/G ratio of about 1.8, the model predicted 
a minimal S/G ratio of about 1.3 for two modifications, 
namely reduction of COMT and CAld5H activities, but 
a minimum of about 1.1 for three modifications in which 
the activities of C4H, CAD, and CAld5H were somewhat 
increased. These computational predictions have not 
been tested in actual plants.

The fact that a model is able to predict the results of 
perturbations is intriguing, especially because the power-
law representation does not explicitly model specific 
reaction mechanisms, but only the overall effect of a 
metabolite or regulator on a given process. Then again, 
the in  vivo data used to formulate and instantiate the 
model encapsulate in some sense everything occurring 
in the plant, which is not the case for in  vitro models. 
Encouragingly, the estimated parameters in Lee’s analy-
sis are in agreement with biochemical knowledge of the 
pathway and provide new insights into the dynamics of 
the pathway (see results in [16]). Similarly, the predic-
tive capacity of the model to characterize the best candi-
dates for gene alterations is interesting, but it remains to 
be seen whether explanations and hypotheses obtained 
with the model are comparable with those obtained with 
a model like Wang’s [9], which was based on experimen-
tally laborious in vitro data.

Lignin synthesis in  alfalfa The structure of the lignin 
biosynthesis pathway and its regulation in alfalfa (Med-
icago sativa L.) are fairly well known, but some observa-
tions on transgenics were confusing as they seemed to 
contradict the pathway structure. In particular, some gene 
knock-downs led to different S/G ratios even though they 
occurred before the branch point where the pathways 
toward S- and G-monolignols diverge. Lee et  al. [8] set 
out to investigate this situation, using an in vivo dataset of 
lignin content and composition in eight stem internodes 
in wild-type and seven transgenic lines (with reduced 
PAL, C4H, HCT, C3H, CCoAOMT, F5H, or COMT activ-
ity). The internode classification in this case provided the 
opportunity to characterize the differential biosynthesis 
of lignin during the maturation of stem tissue.

Without formal computation, an analysis of the logic 
of the pathway topology mandated the reversibility of 
the enzymatic steps catalyzed by HCT and C3H (Fig. 1), 
which had not been considered before. Taking this revers-
ibility into account did not resolve the puzzle regarding 
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S/G ratios though. Thus, the authors constructed a com-
putational model of the pathway by first using FBA to 
compute the steady-state flux distribution in wild type, 
and then applying the method of MOMA [7] to analyze 
the redistribution of fluxes in transgenics. This analysis 
revealed that the results regarding S/G ratios in trans-
genics could not be explained unless functional channels 
were active to partition the pathway flux into dedicated 
S- and G-pathways.

Using statistical analysis, the authors showed that there 
was a strong correlation between the flux catalyzed by 
CCR1 and the flux of the consecutive reaction catalyzed 
by CAD in all strains except for the CCoAOMT-defi-
cient line. This curious result indicated a lack of product 
exchange between coniferyl aldehyde produced by either 
COMT or by CCR1. To examine this situation more care-
fully, the authors tested the possibility of kinetic regula-
tion by the CCR2-COMT and CCoAOMT-CCR1 routes 
(Fig. 1), but extensive Monte-Carlo simulations indicated 
only a very remote possibility of kinetic regulation by 
substrate/product interactions. Instead, the analysis sug-
gested regulation by one or more distant metabolites. 
The authors proposed that salicylic acid (SA) could act as 
the potential regulator of the pathway leading to S-lignin 
synthesis. Indeed, experimental data characterizing the 
correlation between SA and lignin content supported the 
computational hypothesis. Moreover, additional in  vivo 
data, demonstrating the co-localization of COMT and 
F5H [23, 24], provided further evidence supporting the 
channeling hypothesis.

Wang et  al. [9] criticized Lee’s approach on grounds 
that the method was rather indirect and, in particular, 
suggested that a complete kinetic model would be able to 
capture the experimental data without the need for chan-
neling. While the existence of channels awaits further 
validation with direct experimental means, it is unclear 
whether a bottom-up kinetic approach would have led to 
the crisply targeted hypothesis of differentially regulated 
channels directing flux toward either S- or G-lignin.

In a different study, Lee et  al. [25] investigated the 
channeling hypothesis in Medicago by setting up an 
ensemble of dynamic kinetic models in 19 pathway con-
figuration variants. Each of these variants preserved mass 
conservation, while allowing alternative routes includ-
ing one or two metabolic channels across coniferalde-
hyde (Fig. 2). The models also examined the presence or 
absence of putative regulatory mechanisms. Extensive 
Monte-Carlo simulations over a biologically meaning-
ful range of kinetic values identified only 6 among the 
19 plausible configurations as feasible and demonstrated 
that only 4 out of 16 combinations of plausible regulatory 
mechanisms could match the experimental data. A graph 
analysis of these six configurations showed that they were 

topologically closely related and corresponded to a closed 
network, if closeness between two configurations was 
defined as a difference in only one enzymatic reaction. 
Interestingly, all six feasible configurations in the analysis 
included one or both proposed metabolic channels.

While the computational results strongly suggest the 
existence of channels, and independent experimental 
evidence supports these results [8, 23, 24], it is of course 
imaginable that other explanations could be found for 
the counterintuitive data in alfalfa, because even the 
best model fit to data can never offer a guarantee that 
the model is in some sense correct or that there could 
not be other models satisfying the same data in a simi-
lar manner. It is interesting though, that the computa-
tional results were inferred directly from actual data from 
these same species and with a minimum of assumptions, 
whereas models based on in  vitro data, obtained from 
bacteria, should be validated in the target species in situ, 
before they can be considered true. Furthermore, while 
the power-law formulation used by Lee is mathematically 
guaranteed to be correct at an operating point of choice, 
there is no such guarantee for Michaelis–Menten func-
tions; in fact, it is clear that their underlying assumptions 
and prerequisites are violated in situ [2, 12, 26].

Lignin synthesis in switchgrass Similar to the investiga-
tions on poplar and alfalfa, a limited dataset characterizing 
lignin content and composition was available for switch-
grass (Panicum virgatum) [27], one of the most promis-
ing plants in bioenergy research. This dataset was used to 
set up a model of lignin biosynthesis and to examine for 
this species the hypothesis of channeling at a diverging 
branch point, leading to either S- or G-lignin. Specifi-
cally, wild-type and four transgenic (4CL, CCR, CAD, and 
COMT) lignin profiles were analyzed with FBA methods 
to compute steady-state flux distributions. The stoichio-
metric model included three variants permitting alterna-
tive, slightly differing pathways with and without a hypo-
thetical metabolic channel comprising CCR and CAD. 
Extensive Monte-Carlo simulations generated thousands 
of random kinetic parameters to test whether any of the 
three configurations could reproduce the experimental 

Fig. 2 Metabolic channeling in Medicago proposed by Lee et al. [25]. 
The two crossing channels are associated with coniferaldehyde (see 
Fig. 1)
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data in a dynamical manner. Surprisingly, none of the con-
figurations was able to capture the increase in H-lignin 
in 4CL-transgenics. Instead, the computational results 
suggested the necessity to include product inhibition by 
downstream pathway metabolites, as well as substrate 
competition between CCR substrates. These computa-
tional suggestions identified p-coumaroyl-CoA and feru-
loyl-CoA as possible regulators that were arguably neces-
sary to reproduce the observed increases in H-lignin. The 
model also revealed that the reaction catalyzed by 4CL, 
which converts ferulic acid into feruloyl-CoA, constitutes 
an impediment for explaining the counterintuitive accu-
mulation of ferulic acid in COMT transgenics.

Further computational analysis suggested the accu-
mulation of some so-far unidentified metabolite as an 
inhibitor of 4CL and as the mechanism by which ferulic 
acid increased. Revisiting the experimental data indi-
cated a slight accumulation of p-coumaric acid and caf-
feic acid, which was shown to suffice to support the 
model-based hypothesis. Taken together, the pathway 
configuration including both the CCR-CAD channel and 
two independent CCR and CAD reactions, along with 
the deduced regulatory mechanisms, turned out to be 
the only structure capable of matching the in vivo data. 
The authors validated the model to some degree by test-
ing the responses to an enzyme expression profile in an 
independent transgenic PvMYB4 line that had not been 
used at all to set up the model. Overall, the analysis pro-
duced satisfactory results with respect to lignin content 
and composition, as well as the concentration profiles of 
several of the pathway intermediates [27, 28].

Use of pathway data and 13C‑labeling data in Brachypodium 
distachyon
This case study describes new results that have not been 
published so far. For this reason, a short description of 
methods is provided in a later section.

While the results of analyzing in  vivo alfalfa and 
switchgrass transgenics data in a somewhat indirect 
manner were interesting and could be validated to some 
degree, the data themselves constitute a rather thin base 
for model development. This base becomes more solid if 
it is combined with other types of data. An example for 
such a merging of heterogeneous data types is the lignin 
biosynthetic pathway in Brachypodium distachyon. In 
contrast to dicots, monocot grasses use both phenylala-
nine and tyrosine as the initial substrate for monolignol 
production (Fig. 3). One puzzling aspect of this apparent 
redundancy is that, despite the nearly equal contribution 
of both precursors to the total lignin content, phenyla-
lanine is preferentially incorporated into G-lignin, and 
tyrosine into S-lignin, although both pathways converge 

at the same intermediate metabolite, p-coumaric acid 
[29]. This result is surprising and cannot easily be 
explained with putative structure of the lignin pathway 
in Brachypodium. Beyond the existence of this inter-
mediate, where the two pathways converge, the G- and 
S-lignin pathways appear to be the same until they split 
at the coniferaldehyde node.

A computational model directly corresponding to the 
alleged pathway structure (Fig.  3) confirms the logic-
based analysis: the pathway, as currently alleged, can-
not reproduce key observations, such as the differential 
channeling of phenylalanine and tyrosine toward G- and 
S-lignin. Specifically, model simulations demonstrate that 
the pathway scheme in Fig. 3 is unable simultaneously to 
satisfy the following observed requirements:

  • Match the amount of 13C-labeled H-lignin in experi-
ments with [U-13C9]phenylalanine;

  • Match the observed 13C incorporation into ER-
bound ferulic acid in the same experiment;

  • Capture the differential 13C incorporation levels from 
[U-13C9]phenylalanine and [U-13C9]tyrosine in lignin 
units.

One great advantage of a modeling approach is the 
relative ease with which it is possible to test different 
hypotheses and variations of the pathway structure in 
order to obtain possible explanations. As a specific exam-
ple, it was reported that the three enzymes C4H, C3′H 
and F5H of the lignin biosynthesis pathway in B. distach-
yon are bound to the outer surface of the ER, while the 
remaining enzymes are located freely in the cytosol ([29]; 
unpubl. data). This finding led to the hypothesis that the 
spatial localization of enzymes might be a reason for the 
preferential incorporation of phenylalanine and tyrosine 
into different monolignols. This hypothesis was readily 
tested with a computational model that distinguishes the 
two locations (see below). These two locations, or com-
partments, are physically not strictly separated, but allow 
the handing over of metabolites through diffusion.

To test the hypothesis of two distinct locations, we set 
up a refined model scheme by assigning the reactions 
catalyzed by the ER-bound enzymes, C4H, C3′H and 
F5H, to the ER compartment, and all others to the cyto-
sol compartment (Fig. 4). While there is no strict spatial 
separation between ER and cytosol, we assumed pref-
erential enzyme activity within each compartment and 
slower diffusion between compartments. As a note, only 
the net diffusion fluxes are shown in the pathway model, 
but both forward and reverse diffusions are considered 
explicitly in the computational model (see later section). 
Specifically, we took the following steps for our model 
design. In the current scheme (Fig. 4), the only means for 
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incorporation of 13C into H-lignin is through the diffu-
sion flux  D2, and this flux is diluted with the influx from 
unlabeled tyrosine. To increase 13C incorporation into 
H-lignin, a second diffusion flux,  D9, is added between 
the ER compartment downstream of  D2, and this flux 
compensates for the dilution of tyrosine (Fig.  5). This 
diffusion flux  D9 can be interpreted as partial activity of 
4CL in the ER compartment.

Beyond the inconsistent amount of H-lignin, low incor-
poration of 13C in ferulic acid in the [U-13C9]phenylala-
nine labeling experiment is an indication for dilution 
by unlabeled tyrosine through caffeic acid. Therefore, 
a downstream influx,  D10, from the ER compartment is 
postulated to compensate for tyrosine dilution and to 
increase 13C incorporation in wall-bound ferulic acid. 
Again, this flux corresponds to partial activity of C3H in 
the ER compartment (Fig. 5).

Closer inspection of the pathway reveals that the key 
site for preferential incorporation of [U-13C9]phenylala-
nine and [U-13C9]tyrosine into different lignin units is the 
branch point where the pathways toward G- and S-lignin 

diverge; this divergence happens at the coniferaldehyde 
node. The original scheme in Fig.  4 dictates the same 
level of 13C-labeling into both G and S units, due to dilu-
tion in both compartments at the coniferaldehyde node 
into the free cytosol. To explain the actually observed 
higher incorporation of 13C into G-lignin in the pheny-
lalanine labeling experiment, an undiluted upstream flux 
from the ER is necessary to compensate for the dilution 
from the cytosol influx  (D5 and  D6) into the immediate 
G-lignin precursors coniferaldehyde and/or coniferyl 
alcohol. We first modeled this hypothesis by simply add-
ing a suspected direct flux from p-coumaroyl-CoA into 
coniferyl alcohol (Fig. 5, thick blue arrow).

Simulations with this amended model showed that the 
scheme in Fig.  5 is able to capture the levels 13C incor-
poration in H-lignin and ferulic acid from [U-13C9]phe-
nylalanine experiments. Also, by acting as a metabolic 
channel, the direct flux from p-coumaroyl-CoA into 
coniferyl alcohol shields the flow within the ER compart-
ment from strong dilution by diffusion from the cyto-
sol compartment, and thereby enables the preferential 

Fig. 3 Putative lignin biosynthesis pathway in Brachypodium distachyon. Brachypodium can use both phenylalanine and tyrosine as substrates for 
lignin biosynthesis. At this point, the direct conversion of p‑coumaric acid into caffeic acid and the existence of C3H in this organism are speculative. 
Reactions shown in the shaded box have not been fully explored in the current literature
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Fig. 4 Proposed compartmentalized pathway of lignin biosynthesis in B. distachyon. The blue arrows represent enzymatic reactions within each 
compartment. The blue arrows marked by orange stars depict reactions whose catalytic enzymes are bound to the outer ER surface. The red arrows 
show diffusion fluxes between the compartments. The two yellow arrows are effluxes. The quantity r is a compensation constant to address the 
different volumes of the compartment

Fig. 5 Extended compartmentalized lignin pathway model in B. distachyon. Conversion of p‑coumaric acid to p‑coumaroyl CoA by 4CL and 
diffusion flux D9 are necessary to explain label incorporation into H‑lignin in experiments with labeled phenylalanine. Conversion of p‑coumaric 
acid to caffeic acid by C3H and the diffusion flux D10 are necessary to explain label incorporation into ferulic acid in the same labeling experiments 
with phenylalanine. The metabolic channel in the ER compartment keeps some of the 13C‑label from being diluted by the cytosol diffusion fluxes 
and permits preferential incorporation of phenylalanine and tyrosine in S‑ and G‑lignin
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incorporation of phenylalanine and tyrosine–born car-
bons into different monolignols units.

While the long metabolic channel in Fig.  5 is able to 
simulate the preferential incorporation of precursors into 
lignin units, it is intriguing to determine whether fewer 
enzymes in such channel could still reproduce the data. 
Therefore, we examined the scheme in Fig.  5 toward 
the shortest channel possible (Fig.  6). This analysis sug-
gested that the critical point to shield the ER compart-
ment from strong dilution by cytosolic diffusion fluxes is 
coniferaldehyde. Without this compound protected, G- 
and S-lignins cannot attain different 13C9-labeling levels. 
If this conjecture can be validated, the simplest scheme 
consists merely of a CCR/CAD channel.

Simulations of the scheme in Fig. 6 resulted in steady-
state flux distributions that capture the experimental 
13C-labeling data (Fig.  7). Phenylalanine and tyrosine 
contribute nearly equally to the resulting lignin con-
tent: in the [U-13C]phenylalanine experiment, 35% of 
phenylalanine is labeled and tyrosine is unlabeled (nat-
ural abundance), while in the [U-13C9]tyrosine experi-
ment, 35% of tyrosine is labeled and phenylalanine is 
unlabeled (natural abundance). The labeled fluxes in 
Fig. 7 compare the contributions of phenylalanine and 
tyrosine in each pathway flux. Figure  8 exhibits the 
total flux values, which combine the values of labeled 
and unlabeled fluxes. Since the magnitude of the input 
flux is unknown, we normalized the input to a base 
value of 100 units of mass per unit of time. 

Because the system is mathematically underdeter-
mined, its steady-state solution is not unique (see 
Steady-state analysis section). Therefore, a range of 
admissible steady-state values is possible for each flux. 
It is worth emphasizing in this context that all solutions 
in the resulting ensemble are consistent with all perti-
nent observations; namely:

  • Each model in the ensemble captures the experi-
mental data with respect to the label distribution in 
steady-state fluxes. For instance, V24 shows a higher 
labeled portion than V28 when phenylalanine con-
tains the feeding label;

  • The lignin compositions and S/G ratios in all scenar-
ios are compatible with experimental data;

  • The labeled lignin composition is compatible with 
13C9-phenylalanine and 13C9-tyrosine experimental 
data; and

  • The labeled ferulic acid and p-coumaric acid match 
with experimental data.

Further details are presented in Table 1.
The boxplots in Figs. 7 and 8 reflect the distributions 

of admissible values. As can be seen, V8 admits small 
values in comparison to its parallel reactions in cyto-
sol compartment, i.e., V22 and V23. This result demon-
strates that, while the main pathway for the reactions 
catalyzed by CCR and CAD resides in the cytosol, a 
relatively small and undisturbed flux through CCR/

Fig. 6 Revisited compartmental model of lignin pathway with the shortest feasible metabolic channel. The CCR/CAD channel (V8) appears to be 
the shortest path that is able to preserve the flow in the ER compartment from complete dilution by cytosol diffusion fluxes
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Fig. 7 Steady‑state flux distribution of labeled fluxes in Brachypodium. The results compare the percentage of steady‑state labeled flow within 
the steady‑state total flux in [U‑13C9]phenylalanine and [U‑13C9]tyrosine experiments; they correspond to the pathway scheme in Fig. 6. Both 
directions of diffusion for each diffusion flux are shown: Dif aligns with the direction of Di in Fig. 6 and Dir with the opposite direction (see Modeling 
13C‑labeling experiments section)

Fig. 8 Total steady‑state flux distribution in Brachypodium. The total flux includes both labeled and unlabeled fluxes. The results correspond to the 
scheme in Fig. 6
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CAD at the ER is sufficient to establish the metabolic 
channel necessary for preferential incorporation. In 
fact, considering the wrinkled environment of the ER 
surface, it is not hard to imagine that localized pools 
would keep a small fraction of the pathway undis-
turbed from exchanges of metabolites with the cytosol.

A brief review of modeling methods for pathway 
analysis
Generic model formulation
In a kinetic systems model, the dynamics of the path-
way is represented by a system of ordinary differential 
equations (ODEs) in which the metabolites are the 
states. The rate of change in each metabolite is deter-
mined by sums and differences of all fluxes that directly 
affect this metabolite. Each flux is a mathematical func-
tion of the metabolites and other variables of the sys-
tem that needs to be selected. Although the fluxes are 
usually nonlinear functions, the collection of fluxes 
itself forms a linear system, which can be represented 
as a matrix equation of the type

Here, X is the vector of metabolites,  Ẋ is its derivative 
with respect to time, S is the stoichiometric matrix, and V 
is the vector of fluxes. The stoichiometric matrix S defines 
the pathway structure. An element Si,j of this matrix equals 
1 if flux Vj is directed toward metabolite Xi. It is − 1, if flux 
Vj removes material from metabolite Xi, and it is equal to 0, 
if flux Vj has no direct effect on metabolite Xi. In long form, 
the matrix equation can be rewritten for each equation as

(1)Ẋ = S · V .

where n is the total number of fluxes.

Steady‑state analysis
The steady state of a system is important for two reasons. 
First, many biological systems tend to operate close to 
such a state, where the overall concentrations of metabo-
lites do not change, even though flux is running through 
the system. Second, from a mathematical point of view, 
many analyses at a steady state are much simpler than for 
the differential equations themselves, because now one 
has, by definition, Ẋ = 0 , so that all differential equations 
become explicit algebraic equations that can be analyzed 
with methods of linear algebra. If all fluxes are known, it is 
usually not difficult to compute the steady-state of a sys-
tem. However, the reverse is not true: if only the metab-
olite concentrations at the steady state are known, it is 
not easy to compute the corresponding flux distribution, 
because metabolic systems almost always contain more 
reactions than variables. In this case, optimization meth-
ods like FBA or MOMA need to be employed.

In the Brachypodium study, we chose an alternative 
to FBA and MOMA. Namely, we intended to obtain the 
most likely solution without specifying an objective func-
tion for the FBA optimization. Because the degrees of 
freedom of a solution to our system are directly associated 
with diverging branch points, we focused on the flux split 

(2)Ẋi =

n∑

j= 1

Si,jVj

Table 1 Computational model results compared to  experimental data.The model results demonstrate a  good match 
with experimental data in terms of total lignin (A) and the incorporation of label (B)

a Label incorporation in H-lignin was not considered as a criterion during the model calibration. The recorded experimental value in the [U-13C9]phenylalanine 
feeding experiment is greater than the reported label level in phe, which is 35% [29]. As a consequence, we deemed the measurement unreliable and did not use 
labeled H-lignin measurements

A

H/total lignin (%) G/total lignin (%) S/total lignin (%) S/G

 Experimental data 4 41 55 1.09

 Model result 4.1 45 51 1.13

B

H‑lignina (%) G‑lignin (%) S‑lignin (%) Total lignin (%) p‑Coumaric acid 
(%)

Ferulic 
acid 
(%)

Label incorporation in [U‑13C9]phenylalanine feeding experiment

 Experimental data 36 22.3 21 22.2 21 23

 Model result 19.6 19.1 18.1 18.6 17.2 18

Label incorporation in [U‑13C9]tyrosine feeding experiment

 Experimental data 24.6 16.5 18.1 18.6 17 13

 Model result 15.4 15.9 16.9 16.4 17.8 17
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ratios (FSRs) at these points. In cases where these FSRs 
were known, we used their values; otherwise, we per-
formed large-scale Monte-Carlo simulations with thou-
sands of combinations of FSRs and retained only those 
solutions where all fluxes were positive at all time points 
of an experiment. This strategy led to the most likely flux 
profiles. Details of this method are discussed in [30].

As a simplified example, consider the hypothetical 
pathway in Fig.  9, which has two FSRs, and hence two 
degrees of freedom.

The system of differential equations corresponding to 
pathway in Fig. 9 is

Given a set of metabolite concentrations over time, the 
pathway can be driven by infinitely many flux distribu-
tions [31]. To determine the most likely, the system in 
Eq. (3) is first rewritten in terms of FSRs of the system at 
the steady state ( Ẋ = 0).

Now, thousands of pairs (A1, A2) of FSRs are randomly 
generated by Monte-Carlo sampling with Ai ∊ [0, 1]. Each 
pair, entered into the model, yields steady-state values 
of the fluxes V1,…, V5 and D. These are filtered to retain 
only desired fluxes. For instance, in the actual case study 
of Brachypodium, only those flux profiles are retained 
that satisfy the following criteria:

  • Fluxes take only non-negative values at all time 
points;

  • The lignin composition and S/G ratio are compatible 
with experimental data.

(3)

Ẋ1 = Vin − V1,

Ẋ2 = V1 − V2 − D,

Ẋ3 = Vin − V3,

Ẋ4 = V3 + D − V4 − V5.

(4)
V1 = Vin, V3 = Vin,

V2 = (1− A1) · V1, V4 = A2 · (V3 + D),
D = A1 · V1 V5 = (1− A2) · (V3 + D).

It is theoretically possible that the estimation strat-
egy based solely on split ratios does not converge to an 
acceptable solution, and we have discussed means of 
addressing this situation elsewhere [30]. Here the split-
ratio method succeeded without the need for alternative 
methods.

Modeling 13C‑labeling experiments
The diffusion flux between two pools of the same metab-
olite in different locations is comprised of two directions 
(Fig.  10). Although the two opposing fluxes have a net 
value, as shown in Figs.  6 and 9, it is necessary to con-
sider them individually when modeling a labeling experi-
ment. The reason is that the labeling content of each pool 
affects the flow of label, but the net diffusion alone would 
not reflect the free passing of label in both directions. 
For instance, the illustration scheme in Fig.  9 does not 
allow flow of label from X4 to X2 through D when labeled 
metabolite is fed to the pathway through X3, but due to 
the bidirectional nature of diffusion fluxes, it is evident 
that flow would happen in reality. As Fig.  10 illustrates, 
these bidirectional diffusion fluxes form cycles and don’t 
allow the direct computation of steady-state fluxes.

To tackle this issue, we first consider only the net dif-
fusion flux as shown in Fig.  9 and compute the steady 
states. Then we consider the bidirectional model in 
Fig. 10, employ Eq. (2), and use conservation of mass for 
labeled and total fluxes at each metabolite. For a given 
labeling percentage Li, where Li represents the labeled 
portion of the pool of metabolite Xi, we obtain for the 
pathway system in Fig. 10:

which can be rewritten as

(5)
V1 + Dr = V2 + Df ,

L1V1 + L4Dr = L2V2 + L2Df ,

Fig. 9 Material flow through net fluxes in an illustration example. 
Without labeling, it is sufficient to model diffusion fluxes as net fluxes. 
However, this is not the case for labeling experiments (Fig. 10)

Fig. 10 Illustration of the flow of label in the same example as Fig. 9, 
but with explicit flux directions. In contrast to the scenario in Fig. 9, 
labeling experiments mandate the modeling of diffusion fluxes in 
both directions. Specifically, the simpler model in Fig. 9 does not 
allow flow of label from X4 to X2 through D when labeled metabolite 
is fed to the pathway through X3, but the figure here demonstrates 
that such flow is clearly possible
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Similar calculations for pool X4 yield

By equating Df from Eqs. (6) and (7) one obtains

Assuming that L1 and L3 are known from inputs of the 
pathway, Vin, we can compute L4 from the computed 
steady-state fluxes in the previous step and an estimated 
L2. Therefore, L2 is the only unknown to be estimated, and 
L4, Df and Dr can consequently be computed. In fact, we 
only need to estimate the label level of one of the parallel 
metabolite pools in the cytosol and ER compartments.

Similar to the use of split ratios, vector L is generated 
randomly by Monte-Carlo sampling, and the labeled 
fluxes can then be computed. The labeled fluxes corre-
sponding to Fig. 10 are

Closer inspection demonstrates that the model in 
Fig. 9, which considers only net diffusion, computes the 
labeled portion of D as L2D, which is equal to L2(Df − Dr), 
whereas Eq.  (9) quantifies the net labeled flux as 
L2Df − L4Dr.

The fluxes for the Brachypodium example were defined 
in this manner. Labeled fluxes that satisfied the model 
criteria for labeling experiments were recorded. The cri-
teria were

  • The labeled lignin composition is compatible with 
13C9-phenylalanine and 13C9-tyrosine experimental 
data; and

  • The labeled ferulic acid and p-coumaric acid levels 
match the experimental data.

(6)

Dr =
(L2 − L1)V1

L4 − L2
,

Df =
(L4 − L1)V1

L4 − L2
− V2.

(7)

V3 + Df = V4 + V5 + Dr ,

L3V3 + L2Df = L4V4 + L4V5 + L4Dr ,

Dr =
(L2 − L3)V3

L2 − L4
− V4 − V5,

Df =
(L4 − L3)V3

L2 − L4
.

(8)L4 =
L2V2 − L1V1 − L3V3

V2 − V1 − V3

.

(9)

V1,L = L1 · V1,

V2,L = L2 · V2,

V3,L = L3 · V3,

V4,L = L4 · V4,

V5,L = L4 · V5,

Df ,L = L2 · Df ,

Dr,L = L4 · Dr ,

V1,U = (1− L1) · V1,

V2,L = (1− L2) · V2,

V3,U = (1− L3) · V3,

V4,U = (1− L4) · V4,

V5,U = (1− L4) · V5,

Df ,U = (1− L2) · Df ,

Dr,U = (1− L4) · Dr .

The recorded flux vectors were plotted using boxplots, 
which offer a visual representation of the distribution of 
most likely flux values within their admissible ranges.

Discussion
Mathematical modeling in biology is still in its infancy. 
Especially within the realm of plant and crop science, the 
number of modeling articles is negligible in comparison 
to experimental papers. As a consequence, the collective 
experience with plant and crop modeling approaches is 
still limited, and much more practice and many more 
case studies will be needed to gain a glimpse into the sys-
temic responses of plants to interventions and manipula-
tions. It may even be, as some experts claim (Leroy Hood, 
pers. comm.), that a “new math” is needed that allows us 
to combine different data and heterogeneous information 
in a more efficacious manner than is possible today. Ulti-
mately, a deeper understanding of such responses would 
allow us to answer questions like “how does ‘a’ plant react 
to natural or artificial changes?” or “why does plant (or 
plant species) A respond differently to a perturbation 
than plant (or plant species) B?”

To obtain more practice and experience of this type, 
experimentalists and modelers should collaborate more 
closely. On the one hand, modelers will need experi-
ments specifically performed for some modeling aspects. 
At present, many data are available, and the data flow 
from -omics experiments can be overwhelming. How-
ever, not all data are useful for the type of modeling out-
lined in this article, and modelers will be dependent on 
experimentalists to perform other types of experiments 
[32]. On the other hand, experimentalists will want to see 
genuinely new results coming out of models, especially 
if they had contributed data to the modeling effort. They 
will benefit from new, integrative interpretations of their 
data and from reliable modeling results and computa-
tionally achieved hypotheses guiding the “next steps” in 
their research programs. The generic differences between 
laboratory or field experiments and computational 
approaches render it evident that this type of collabo-
ration has true potential, but that it will take time and 
patience on both sides to make progress toward reaching 
some of this potential.

As a tangible target, experimentalists and model-
ers should explore together to what degree meta-
bolic responses can be predicted (qualitatively or 
quantitatively) from the existence of genes and enzymes 
(as, for instance, TAL in the case of Brachypodium) or 
from quantitative transcriptomics, where one would 
expect to find similarities between gene expression and 
changes in enzyme activities, which however do not 
always materialize in reality, due to post-transcriptional 
alterations. It would also benefit both sides to obtain 
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and computationally analyze data describing the same 
process in different species, as we demonstrated here 
with the different models for lignin biosynthesis. At first, 
these comparative analyses could shed light on questions 
such as: whether apparent differences between species 
are experimental or modeling errors; whether different 
designs have evolved in line with the general phylogeny 
of these species or whether they are due to other factors; 
and whether different natural designs are dictated by dif-
ferent environmental needs or demands. Together, these 
combined analyses would have the potential of reveal-
ing design principles that govern these processes and 
could provide deep explanations for why certain species 
solve a task in the observed fashion and not in a different 
fashion.

As an example, we discussed lignin biosynthesis. The 
lignin heteropolymer and its monomers are quite similar 
among different species and, indeed, the intermediates 
of their biosynthetic pathway are essentially the same. 
However, the enzymatic reactions of the pathway exhibit 
striking differences, not just in terms of their kinetic fea-
tures or parameters, but even in their existence. These 
differences raise the question why one pathway design 
is favored in one case, but not in another. The answer to 
this question is not only academically interesting but is of 
immediate pertinence to the biofuel scientist and meta-
bolic engineering in general, because ignorance of the 
true reasons mandates a new conceptual model for every 
untested species. By contrast, knowledge of a general 
design or operating principle would allow predictions 
regarding the pathway topology of a new species based 
on the criteria on which the principle is founded.

The different pathway models for lignin synthesis 
in a number of plant species [8, 9, 16, 25, 27, 28] have 
revealed commonality, but also differences in regulatory 
features and, as suggested here, compartmentalization. 
One could thus come to the conclusion that every species 
manages its lignin production differently. However, the 
fact that some distinctive features of one model are not 
part of the other models should not be over-interpreted, 
at least not quite yet. It is well possible that the pathway 
in alfalfa and switchgrass is as compartmentalized as 
the one in Brachypodium, but the dictum of simplicity 
in modeling, and the data that these models were based 
upon, suggested that specific compartments were not 
needed to match the data in these species. The same is 
true for other apparently distinguishing features, such as 
product inhibition, which we found necessary in switch-
grass, and which may well be in effect in other species. 
These features were needed to make the models consist-
ent with specific data typesets, and if one re-analyzed the 
models with other types of data types, the same features 
could well be suggested for other species. As it stands, 

the collective experimental database is sparse, and the 
published models are minimalistic special cases of the 
same “master model,” which can even account for the fact 
that some species seem to be missing certain pathway 
metabolites or enzymatic reactions. It remains to be the 
subject of further data generation and analysis to deter-
mine whether these differences disappear toward one 
common, complex model, whether they are immaterial 
byproducts of evolution that did not exert strong selec-
tive pressure, or whether they evolved for reasons that 
are germane to these species and their environments. 
The cooperation between experimentalists and model-
ers has led to early successes. Some of these are narrowly 
focused by explaining observations that had been puz-
zling before. We described some of these in the context 
of lignin synthesis and recalcitrance. To study some of 
the in vivo complexity in an in vitro system, the lignify-
ing cell suspension cultures reported in several species 
(Arabidopsis [33], poplar [34], switchgrass [35]) could 
be useful for modeling purposes of the lignin pathway. 
These systems can be studied along a time course when 
lignin deposition and cell differentiation occur, allow-
ing the evaluation of different parameters such as pH or 
temperature and the use of dynamic models that could be 
proposed as potential in vivo validation systems.

Others studies have attempted to connect several scales 
of the biological hierarchy of processes, both in time and 
size (e.g., [36–41]). Not surprisingly, such much larger 
models cannot account for every detail at every lower 
level. Nonetheless, it might be useful, for instance, to use 
agent-based models at the highest scale considered, such 
as overall plant growth, and to anchor into them detailed 
models of key sub-systems, such as photosynthesis, res-
piration, and stress responses. Instead of an agent-based 
model, the highest level could also be a dynamic FBA 
model [42], or it is even possible to use low-level models 
as constraints in genome-wide metabolic models [43].

The epitome of such models is whole-plant-plus-envi-
ronment models that have been developed in recent 
years and capture governing processes and responses 
quite well. For instance, SOYSIM [44] is a computa-
tional model that simulates soybean growth on a daily 
basis throughout its lifecycle. It permits reasonably accu-
rate explorations of water use, additional irrigation, and 
potential yield under different conditions. Another exam-
ple is the WIMOVAC simulation model, which allows 
investigations of the carbon balance in plants and per-
mits predictions of crop responses to changes in climate 
[45–48]. It is applicable to different plant and soil types 
and can be used by researchers, managers and students 
as an exploratory tool. These organismal models are now 
to be coupled more comprehensively to environmen-
tal and agricultural models, an effort that has recently 
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been coined Crops in silico [49–51]. To be successful, 
this effort will require the close collaboration not only 
between experimental plant scientists and mathematical 
modelers, but also involve experts in biophysics, hydro-
geochemistry, meteorology, high-performance comput-
ing, visualization, and many other fields. The challenges 
are grand indeed, but a solid foundation is being built by 
the collaboration of several communities, such as BESC 
[52], and it will only be a matter of time and collective 
willpower to increase momentum allowing us to achieve 
some of the set goals.
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