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Abstract 

Background Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives 
for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation 
of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respec-
tively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high 
amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. 
Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms 
behind PHB accumulation.

Results Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work 
identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the pos-
sible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression 
differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsi-
ble for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illu-
mination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced 
than the reference strain, yielding in better performances.

Conclusions Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights 
for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work 
supplies crucial knowledge about the metabolic processes involved in production and accumulation of these mol-
ecules, which can be seminal for the application to other microorganisms as well.
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Background
The continuously increasing consumption of plastics is 
one of the main environmental burdens of the modern 
society [1]. Use of traditional petroleum-based plas-
tics is not only unsustainable in the long term [2, 3] but 
also leads to severe environmental consequences, since 
the accumulation of plastic waste is causing devastat-
ing effects on ecosystems, wildlife and human health [4]. 
One alternative to common plastics are poly-hydroxyal-
kanoates, such as poly-3-hydroxybutyrate (PHB) which 
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are bio-based, renewable and biodegradable polymers 
[5–7]. Although PHB is currently used in numerous com-
mercial applications, presently, it is mainly produced by 
heterotrophic bacteria, posing a potential competition 
with human food-supply chain as these organisms usu-
ally require expensive organic carbon (C) sources [8–10]. 
One strategy to address this issue is to exploit phototro-
phic organisms, such as cyanobacteria, which readily 
fix inorganic C, with an added advantage of converting 
atmospheric carbon dioxide  (CO2) into medium term 
C storage as plastic, mitigating its accumulation in the 
atmosphere [11].

The cyanobacterium Synechocystis is a promising can-
didate for PHB production owing to its fast growth rate 
and ease of genetic manipulation [3, 12, 13]. In fact, is a 
native C storing polymer, which can accumulate around 
4.5% (w/w) of PHB in stationary phase, reaching up to 
9.5% and 11% in nitrogen (N) and phosphorus depri-
vation [6, 14]. In cyanobacterial cells, PHB generate 
through a biosynthetic pathway starting from acetyl-
CoA and involving three catalytic steps catalysed by Pha 
proteins [15]. The precursor acetyl-CoA is also involved 
in many other metabolic processes, such as glycolysis, 
glycogen catabolism and lipid related pathways, so that 
increasing C flux towards acetyl-CoA has been shown to 
a good strategy to improve PHB production [16].

N supply and light intensity have been identified as 
two major environmental factors influencing PHB pro-
duction. N starvation [12] induces PHB production 
because, in the absence of an essential nutrient required 
for protein synthesis, cyanobacteria redirect the product 
of photosynthetic  CO2 fixation into reserve molecules, 
accumulating PHB [12, 17, 18]. It serves as an electron 
and C sink for products of photosynthesis [19–21], ena-
bling at the same time to maintain redox balance within 
the cell and avoid over-reduction of the photosynthetic 
electron transport chain [21, 22].

The effect of light on PHB production, on the other 
hand, is much less known and is suggested to be strain-
specific [6, 23–28]. However, most available studies 
regarding PHB production used constant light intensi-
ties ranging between 30 and 150 μmol photons  m−2   s−1, 
much lower than natural light intensity in any potential 
large-scale production system [28].

Despite the strong advantages of PHB production 
through cyanobacteria, such as low nutrient require-
ments, no need for organic feedstock, potential growth 
in industrial-scale photoreactors and low environmen-
tal impact [29, 30], there are still several constraints. 
Low PHB yields, high costs of downstream processing, 
and difficulty in achieving the best trade-off between 
biomass and PHB accumulation are factors that limit 
large-scale implementation of the process [1, 18, 31]. 

The cyanobacterial strain Synechocystis sp. B12, recently 
isolated from a contaminated mangrove site in Brazil, 
has been shown to produce high amounts of PHB, up 
to 241 mg   L−1 (31% w/w), while being tolerant to high-
light intensity. These features make it extremely valu-
able for outdoor industrial production [27] but also as 
model to identify the molecular bases of superior PHB 
accumulation.

Here, we investigate Synechocystis sp. B12 to iden-
tify the genetic basis of its enhanced PHB productiv-
ity. In addition to its potential interest as a platform for 
sustainable industrial PHB production, this information 
will also be seminal in increasing accumulation in other 
microorganisms.

Materials and methods
Cell culture conditions and growth experiments
Synechocystis sp. PCC 6803 was obtained from the Pas-
teur Institute (France) [25, 32], while Synechocystis sp. 
B12 was isolated from a mangrove site located in San-
tos (Brazil) [27]. Cultures were maintained in BG-11 
medium [32], at 30  °C, agitation of 120  rpm and under 
35  μmol  photons   m−2   s−1 continuous white light pro-
vided by LED lamps.

Cells growing in exponential phase in normal BG-11, 
supplemented with 6  mM  NaHCO3, were diluted at 
 OD750 of 0.3 in 60 mL Erlenmeyer flasks, and exposed to 
two different N conditions: normal BG-11 as control or 
N-free BG-11, and exposed to two different light condi-
tions: 35  μmol  photons   m−2   s−1 as control low-light or 
300 μmol photons  m−2  s−1 as high-light. The cell growth 
was routinely monitored for 7 days, through  OD750 meas-
urements with a TECAN Spark™ Microplate Reader. 
Growth phase was determined by plotting the  OD750 on 
a logarithmic scale.

To determine the dried biomass concentration, 5  mL 
were filtered on 0.45  µm pore size nitrocellulose mem-
branes (Millipore). Nitrocellulose membranes were dried 
overnight in an oven at 65  °C and weighed before and 
after the filtration to determine the net cell dry weight 
(CDW).

All experiments were carried out in at least three bio-
logical replicates. The variance between the different 
conditions was estimated through two-way ANOVA 
(assuming the Gaussian distribution of data) followed by 
Tukey’s multiple comparison test with significance set at 
p < 0.05. Analyses were performed through the software 
GraphPad Prism (v.10.1).

Pigment content determination
Chlorophyll a and total carotenoids were extracted 
from 2  mL of Synechocystis culture in 100% N,N′-
dimethylformamide, as previously described [33]. 
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Pigments concentrations were measured with a spectro-
photometer (Cary 300 UV–Vis, Agilent) and calculated 
according to Ref. [34].

PHB evaluation through Nile Red staining
Fast evaluation of PHB production by different Syne-
chocystis strains in different N and light conditions was 
carried out using Nile Red (Merck) staining, implement-
ing previous protocol [35]. In this case, 800 μL of cells, 
concentrated at  OD750 of 0.2 in deionized water, was 
mixed with Nile Red to reach a final concentration of 
1.25 μg  mL−1 and incubated in the dark at 54 °C for 1 h. 
The fluorescence was measured using a TECAN Spark™ 
Microplate Reader, with excitation and emission wave-
lengths at 488 nm and 585 nm, respectively [35].

Fluorescence-activated cell sorting (FACS) was carried 
out on a BD LSRFortessa™ Cell Analyzer flow cytometer. 
The following parameters were observed: forward scatter, 
side scatter, PerCP (Peridinin chlorophyll)-Cy5.5 fluores-
cence and PE (Phycoerythrin) fluorescence to detect Nile 
Red (Additional file 1: Fig. S1).

PHB extraction and analysis
To evaluate the PHB production, approximately, 35 mL of 
cyanobacterial cultures was pelleted at 3000 g for 15 min, 
freeze-dried and weighed. 10  mg of lyophilized cells 
was subjected to de-esterification using acidified (3% 
 H2SO4) methanol in combination with chloroform in 1:1 
ratio incubating for 4 h at 100 °C, and measured accord-
ing to Ref.  [36]. The resulting methyl esters of hydroxy-
alkanoates were analysed through a Thermo Finnigan 
Trace Gas Chromatograph, equipped with FID detector 
and AT-WAX column as previously reported [37]. The 
carrier gas was helium at the flow rate of 1.2 mL  min−1. 
The split/splitless injector was used with a split ratio 
of 1:30 set at 250  °C, the FID temperature was 270  °C, 
while the oven was set at 150  °C throughout the run. 
Benzoic acid and poly-3-hydroxybutyric acid (Sigma-
Aldrich) were adopted as internal and external standards, 
respectively.

Genome sequencing, assembly and annotation
DNA extraction from Synechocystis sp. B12 was car-
ried out as Ref. [27] and quantified using Nanodrop™ 
(ND 1000 Spectrophotometer). Illumina libraries were 
prepared with the Nextera DNA Flex Library Prep Kit 
(Illumina Inc.) and were sequenced using the Illumina 
Novaseq platform. Nanopore sequencing was performed 
using the Rapid Barcoding kit (SQK-RBK004) and a 
FLO-MIN106 R9 flow cell on a MinION device (Oxford 
Nanopore Technologies). Sequencing was performed 
at the next-generation sequencing facility of the Biology 
Department (University of Padua).

The assembly was obtained from both Nanopore and 
Illumina reads. Nanopore reads were assembled using 
Canu (v.2.2) [38]. Illumina reads were first trimmed with 
Trimmomatic (v.0.39) [39] and aligned using Bowtie2 
(v.2.4.4) [40]. Pilon (v.1.24) [41] was used to polish the 
final assembly. As Synechocystis sp. B12 was recently iso-
lated from the environment, CAT (v.5.2.3) [42] was used 
to assess the presence of contaminants in the genome. 
Contigs belonging to B12 were binned using Metabat2 
(v.2.15) [43] and the quality of the final genome was 
assessed using Quast (v.4.1) [44] and CheckM2 (v.1.0.0) 
[45]. PLASMe (v.1.1) [46] was used to assess the pres-
ence of plasmids. Prokka [47] was used to annotate the 
genomes. The same gene prediction and annotation pipe-
lines and settings were used for both the strains to iden-
tify strain-specific genes.

The single nucleotide polymorphisms (SNPs) and DNA 
insertions and deletions (indels) calling was done using 
GATK’s Haplotype Caller pipeline [48]. SnpEff (v.5.2) [49] 
was then used for variants annotation to predict their 
putative effects.

RNA sequencing and transcriptomic analyses
RNA was extracted from Synechocystis sp. PCC 6803 and 
B12 cultures, growing with and without N in high-light 
conditions for 48  h, using Trireagent (Sigma-Aldrich) 
according to the manufacturer’s instructions. DNase I 
(Qiagen) treatment was applied to remove the gDNA 
contamination, and RNA was further purified using 
Direct-zol™ RNA Microprep (ZYMO Research). RNA 
quality was first checked by gel electrophoresis (1% aga-
rose w/v) and then quality and quantity were verified 
using a Bioanalyzer™ (Agilent Technologies). Samples 
were treated with the QIAseq FastSelect kit (Qiagen) in 
order to mask ribosomal RNAs. Libraries were prepared 
with the Illumina Stranded mRNA Prep (Illumina inc.) 
and sequencing was carried out on Illumina Novaseq 
6000 platform (2 × 150, paired end) at the sequenc-
ing facility of the Biology Department of (University of 
Padua).

The genome sequence of Synechocystis sp. PCC 6803 
(RefSeq ID: GCF_000009725.1) and the corresponding 
gene annotations were downloaded from NCBI and used 
to perform the transcriptomic analysis. RNA-seq Illu-
mina paired-end reads were trimmed with Trimmomatic 
(v.0.39) and clipped with BBDuk (v.38.86) to remove 
adapters. Trimmed and filtered reads were aligned to the 
reference genome with Bowtie2. Read count tables were 
obtained by extracting from the alignment files the num-
ber of reads mapping within each gene with HT-Seq [50].

Differential expression analysis was performed with 
DEseq2 (v.3.14) [51] by comparing PCC 6803 against B12 
in both N conditions. Benjamini–Hochberg correction 
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for p values was applied to each gene [52]. Enrichment 
analysis was performed using iDEP (v.0.96) [53].

Results
Effect of light and nitrogen supply on cyanobacterial 
growth
Synechocystis sp. B12 physiological properties were com-
pared to the reference strain Synechocystis sp. PCC 6803. 
Growth and biomass productivity were assessed dur-
ing a growth experiment under low- or high-light (35 or 
300 μmol photons  m−2  s−1, respectively), in N-replete or 
N-free medium.

In low-light conditions, as expected, there was a growth 
difference depending on N in the medium. Cells of both 
strains growing in N-free medium reached the stationary 
phase after three days, while cells growing in N-replete 
medium were still in late exponential phase after 7 days, 
reaching double concentrations with respect to N-free 
growing cells (Fig. 1A, C). This trend was confirmed by 
biomass quantifications (Fig. 1D).

In cultures exposed to high-light, growth in N-free 
medium was similar to that in low light (Fig.  1B–D) 
in the two strains, suggesting the nutrient depletion is 
the parameter with the highest impact on growth. In 
N-replete medium, a detrimental effect of high-light 
was noticeable in Synechocystis sp. PCC 6803, which 
reached the stationary phase after 4 days, as opposed to 
6 days for strain B12 (Fig. 1B, C). Overall, Synechocystis 
sp. B12 presented an increased growth compared to PCC 
6803 in N-replete medium and high-light condition, in 
particular in the second part of the experiment (Fig. 1B, 
D). This was confirmed by Synechocystis sp. B12 higher 
biomass productivity under strong illumination, approxi-
mately 25% higher than PCC 6803 in the same condition 
(Fig. 1D).

Since culture colour was strongly different based on 
experimental conditions (Fig. 1C), pigments content was 
also investigated. Under N starvation, both in low- and 
in high-light conditions, both strains showed a much 
lower pigment content than with full media, with limited 

Fig. 1 Growth and biomass of the Synechocystis sp. strains PCC 6803 and B12. A, B Graphs show the optical density measured at 750 nm  (OD750) 
of Synechocystis sp. strains growing in BG-11 medium N-replete or N-free, in low-light conditions at 35 μmol photons  m−2  s−1 (A) and in high-light 
conditions at 300 μmol photons  m−2  s−1 (B). Data indicate the average (± SD) of at least three biological replicates. (C) Photos of PCC6803 and B12 
cultures grown for 7 days in BG-11 medium N-replete or N-free, in low- and high-light conditions. (D) Whole biomass production, represented as g 
 L−1, including both cell and PHB biomass of PCC 6803 and B12, grown in BG-11 medium N-replete or N-free, in low- and high-light conditions. 
Data indicate the average (± SD) of at least three biological replicates. * indicates p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 (for complete 
statistical output, see Table S1)
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impact from illumination intensity (Fig. 2A, B and Addi-
tional file 1: Fig. S2). N-replete conditions showed instead 
a larger difference between strains, with a higher chlo-
rophyll a content in Synechocystis sp. B12 compared to 
the reference strain in both light conditions (Fig. 2A and 
Additional file 1: Fig. S2).

PHB production in response to different conditions
PHB accumulation was periodically assessed by Nile Red 
staining, to have a fast indication of intracellular poly-
mer content during the experiment. When growing in 
N-replete medium, whether in low- or high-light con-
ditions, PHB production was negligible in both strains 
independent of light conditions (Fig.  3A, B), suggesting 
light alone is not sufficient to stimulate PHB accumula-
tion. In contrast, when grown under N starvation, both 
strains produced PHB, with Synechocystis sp. B12 show-
ing higher amount of intracellular PHB in comparison to 
PCC 6803, in both light conditions (Fig. 3A). These PHB 
were intracellularly accumulated as granules, which can 
be observed through microscopy (Fig. 3C). High-light in 
combination with N starvation stimulated an even higher 
PHB production by Synechocystis sp. B12, 1.5 times 
higher than in low-light (Fig. 3A, B).

Nile Red observations were confirmed by chroma-
tographic PHB quantification after 7 days of growth 
(Fig. 3D), with both strains showing higher PHB produc-
tion in N-starved condition in high l-ght, reaching 3.4% 
of CDW in Synechocystis sp. PCC 6803 and 6.1% in Syn-
echocystis sp. B12 strain (Fig. 3D).

Genome assembly and variant analysis
To identify the genetic bases for the differential PHB 
accumulation capacity and high-light growth in Syne-
chocystis sp. B12 strain, its genome was sequenced. The 
assembled genome comprised four scaffolds, of which 

one corresponded to the chromosome, 3,660,711 bp long, 
and the others to three plasmids: pSYSG of 66,146  bp, 
pSYSM of 124,281 bp and pSYSA of 112,855 bp. The total 
GC content of the assembly was 47.33%. Genome com-
pleteness was 95.7% with a negligible amount of contami-
nation (0.6%). The genome size was comparable to the 
one of the reference strain PCC 6803 (3.57 Mb), while the 
number of coding sequences (CDS) and proteins were 
slightly higher than the reference strain: 4402 CDS vs 
3340 and 4352 proteins vs 3599 (Additional file 2).

Annotated genomes of Synechocystis sp. B12 and PCC 
6803 were compared to identify genomic differences 
(Additional files 2 and 3). Reciprocal BLAST revealed the 
presence of strain-specific genes, most of which hypo-
thetical (Additional file  2). Variant analyses revealed 
the presence of 677 non-synonymous polymorphisms 
between strains, out of which 150 were missense. Inter-
estingly, no effective non-synonymous SNPs were found 
in genes directly involved in PHB pathway (Additional 
file 2). However, a deletion in B12 strain was identified in 
the gene encoding for the phosphate-specific transport 
system integral membrane protein A (pstA), strictly asso-
ciated with PHB accumulation [54]. In fact, a point muta-
tion in this gene was shown to be linked to an increase 
in PHB production in Synechocystis sp. PCC 6714 strain 
[54]. Besides higher PHB production, the mutant strain 
exhibited increased biomass productivity, but unaltered 
regulation of PHB biosynthesis-related genes, suggest-
ing that the increased PHB production was due to genes 
indirectly involved in PHB synthesis, likely mediated by 
the downregulation of pstA.

Gene expression remodelling in Synechocystis sp. strains
As reported in Fig. 3, N availability was found to be the 
main assessed factor impacting PHB accumulation in 
cyanobacteria. To identify the differences that make 

Fig. 2 Pigment content of Synechocystis sp. PCC 6803 and B12, normalised on the  OD750. A Chlorophyll a and B carotenoid content of Synechocystis 
sp. strains growing in BG-11 medium N-replete or N-free, in low-light conditions at 35 μmol photons  m−2  s−1 and in high-light conditions 
at 300 μmol photons  m−2 s.−1, after 7 days from the beginning of the experiment. Data indicate the average (± SD) of at least three biological 
replicates. *** indicates p < 0.001 (for complete pigment analysis, see Additional file 1: Fig. S2)
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Synechocystis sp. B12 more efficient in this process, the 
mRNAs of Synechocystis sp. PCC 6803 and B12 strains 
growing in high-light, in both N-replete and N-free con-
ditions, were sequenced.

In total, 1372 genes showed statistically significant dif-
ferential expression in at least one comparison. To focus 
on more relevant expression changes, only the genes with 
absolute  Log2 Fold-Changes (LFC) ≥ 1 were considered 
to perform different comparisons (Fig. 4A). The principal 
component analysis (PCA) shows that samples of both 
strains are separated along the first principal component 
(43% of variance) according to N starvation, and along 
the second one (30% of variance) according to the strain 
(Fig. 4B).

While there was a significant similarity between the 
two strains, with 292 total shared differentially regulated 
genes (DEGs), a substantial number of genes were iden-
tified to be specifically up- (n = 99) and downregulated 
(n = 102) in Synechocystis sp. B12, suggesting a differenti-
ated metabolic remodelling (Fig. 4C, D).

Transcriptional variances underscoring Synechocystis 
sp. B12 advantage in high‑light
The genes undergoing a more evident transcriptional 
regulation in both strains were related to photosynthe-
sis (Figs. 4D, 5A). In particular, hliA and hliB genes were 
upregulated in both N-starved strains (Fig.  5A): they 
encode for high-light-inducible proteins protecting the 
photosynthetic apparatus of cyanobacteria from light 
stress, and known to be induced also by nutrient stress 
[55, 56].

Interestingly, genes which undergo higher upregulation 
in Synechocystis sp. B12 than PCC 6803 are not anno-
tated (Fig.  5A), so their function has not been assessed 
on inferred yet. Thus, gene expression differences on 
the comparison + N (B12 vs 6803) were systematically 
analysed to identify variations between strains in high-
light and N-replete conditions (Fig.  5B). Most of these 
differences referred to photosynthesis, with the upregu-
lation of genes related to Photosystem II (PSII) (psb 
genes) and chlorophyll biosynthesis in Synechocystis 

Fig. 3 PHB production of Synechocystis sp. PCC 6803 and B12 cells. A, B Nile Red fluorescence normalised on  OD750, used as proxy for PHB 
production, after 2, 4 and 7 days from the beginning of the experiment. Synechocystis sp. strains were grown in BG-11 medium N-replete 
or N-free, in low-light conditions at 35 μmol photons  m−2  s−1 (A) and in high-light conditions at 300 μmol photons  m−2 s.−1 (B). C Confocal 
images of a Synechocystis sp. B12 cell grown in N starvation for 7 days, stained with Nile Red highlighting PHB granules. Red indicates chlorophyll 
autofluorescence, green for Nile Red-stained PHB granules. Scale bar: 3 µm. D Quantification of PHB as percentage of cell dry weight. Data indicate 
the average (± SD) of at least three biological replicates. * indicates p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 (for complete statistical 
output, see Table S1)
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sp. B12 (Fig. 5B), consistently with the higher measured 
chlorophyll content (Fig.  2B). In addition, bicarbonate 
transporters (cmpB and ictB genes) were significantly 
upregulated in B12 strain, as well as nblA genes involved 

in phycobilisome degradation (Fig.  5B). Phycobilisomes 
are the major light-harvesting apparatus in cyanobacte-
ria, that decrease in number when exposed to high-light 
stress to reduce the amount of harvested light [57]. The 

Fig. 4 Overview of the transcriptome of Synechocystis sp. PCC 6803 and B12. A Numbers of differentially expressed genes (DEGs) for all 
comparisons. In the “− N vs +N” comparison “+N” indicates N-replete condition and was set as reference, while “− N” indicates N starvation. B 
Principal component analysis (PCA) shows the effect of N starvation for component 1 and changes related to the different strain for component 2. 
C Venn diagrams and clustering analysis of RNA-seq results, combining single comparisons to find strain-specific genes regulated in N starvation. 
D Functional enrichment analysis of DEGs in Synechocystis sp. PCC 6803 (left) and B12 (right), where the normal N condition was considered 
as the reference and the N starvation was the test. Y-axis indicates affected pathways, upper X-axis represents the enrichment score, represented 
by dots, while lower X-axis displays a number of DEGs, shown as bars
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upregulation of nblA genes in Synechocystis sp. B12, 
coupled with the downregulation of cpcG2 encoding for 
a phycobilisome core linker polypeptide (Fig.  5B), sug-
gested that the strain B12 could be more capable of mod-
ulating its light-harvesting efficiency.

Transcriptional differences induced by N starvation
Photosynthesis‑related genes
Differences in gene expression between strains in N star-
vation were analysed by comparing Synechocystis sp. 

6803 (−N vs +N) with B12 (−N vs +N). It is well known 
that photosynthesis represents one of the most regulated 
pathways in N starvation, this is confirmed by the down-
regulation of most genes involved in allophycocyanin 
(apc), phycocyanin structure and biosynthesis (cpc, hem 
and ho), PSI (psa) and ATP synthase (atp), similar in both 
strains (Fig.  5 and Additional file  3: File S2). However, 
PSII-related genes showed different downregulation pat-
terns: psbB, encoding for the chlorophyll-binding CP47 
protein [58], was significantly downregulated only in 

Fig. 5 Gene expression differences between Synechocystis sp. PCC 6803 and B12 in high-light. A Heatmap of the top 50 differentially expressed 
genes in Synechocystis transcriptome. The intensity of the orange/purple colours represents the normalised expression level. The rows have 
been sorted according to the gene clustering tree following Pearson correlation. The left-hand bar is colour-coded according to the functions 
of the genes. B Heatmaps representing gene expression differences between strains in normal N conditions for a set of significantly (p < 0.05) 
variable (LFC > 1) genes. In this comparison, B12 expression values are reported using PCC 6803 as reference. Red shadows indicate upregulated 
genes while blue is used for downregulated genes, with the scale bar showing LFCs. * indicates p < 0.05, ** p < 0.01 and *** p < 0.001
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N-starved Synechocystis sp. PCC 6803 (Fig. 6A). Another 
component of the core complex of PSII, psbJ was signifi-
cantly downregulated only in PCC 6803, but psbX and 
psbZ were downregulated only in Synechocystis sp. B12 
(Fig. 6A).

PetA, petD and petG are component of the cytochrome 
b6f complex, mediating electron transfer between PSII 
and PSI [60, 61]: while the first two were significantly 
downregulated in PCC 6803, petG was downregulated in 
Synechocystis sp. B12 (Fig. 6A and Additional file 3). As 
the cytochrome b6f complex is retained to be the limit-
ing step of photosynthetic electron transport [62], a 
reduced downregulation in B12 could explain the higher 
photosynthetic capacity. Cytochrome b6f also participates 
in cyclic electron transfer [63], as well as pgr5, strongly 
upregulated in both strain in N starvation, and prob-
ably involved in protecting photosynthetic apparatus 
under stress, similarly to N-starved eukaryotic algae [64] 
(Fig. 6A and Additional file 3).

Other two strongly regulated genes were isiA and isiB, 
encoding for chlorophyll antenna protein and flavodoxin, 
respectively, and responsible for Synechocystis protection 
from photooxidative stress [65, 66]. IsiB was upregulated 
while isiA was significantly downregulated in N-starved 
Synechocystis sp. B12 (Fig. 6A). Analysing genes involved 
in C fixation and metabolism,  CO2 concentration mecha-
nisms (ccm) were significantly downregulated in Synecho-
cystis sp. B12 in N starvation, more than in PCC 6803, 
even if RuBisCO-related genes (rbc) were similarly down-
regulated in both strains (Fig. 6B).

Regulation of genes involved in N assimilation
Previous functional enrichment analyses showed that, 
beside photosynthesis, metabolic processes associ-
ated with N compounds were also strongly affected 
(Fig.  5). Nitrate (narB) and nitrite reductases (nirA) 
were upregulated in N-starved PCC 6803 (Fig. 6C), simi-
larly to nitrate/nitrite transporters nrtA, nrtB and nrtC 
(Fig.  6C and Additional file  1: Fig. S3A), indicating that 
PCC 6803 in N starvation could increase its potential 
in nitrate uptake and assimilation. On the other hand, 
N-starved Synechocystis sp. B12 specifically upregulated 
ammonium transporter amt2 (Fig.  6C and Additional 

file 1: Fig. S3A), as well as putative amino acid transport-
ers slr1735, sll1270 and slr0360 (Additional file  1: Fig. 
S3A), inferred by sequence homology, which are often 
used by organisms as an alternative route to take up N 
from the external environment [67, 68]. This could be 
the result of both nitrate absence in the medium and 
the affected biosynthesis of amino acids, which cells try 
to overcome by increasing the activity of the glutamine 
synthetase–glutamine:2-oxoglutarate aminotransferase 
(GS-GOGAT) cycle, through the upregulation of glnN, 
glsF and gltB (Fig. 6C). This could represent an advantage 
in conditions of complete N depletion like here, where 
in absence of other N sources, N is mainly recycled by 
degrading proteins. Thus, increasing the uptake of alter-
native N sources from the external environment could 
partially avoid intracellular protein degradation.

Regarding other transport systems, phosphate trans-
port showed an upregulation in both N-starved strains 
[69] (Additional file 1: Fig. S3A), while sulphate as well as 
many other ion transporters (kdpB, brtC and mntB) were 
upregulated specifically in N-starved PCC 6803 (Addi-
tional file  1: Fig. S3A), suggesting different strategies in 
managing ion homeostasis.

Regulation of genes involved in PHB biosynthesis 
and acetyl‑CoA metabolism
Synechocystis sp. B12 showed a significant upregulation 
of pentose phosphate pathway (PPP) in N starvation, 
with the induction of gnd, zwf and xfp genes (Fig.  6D), 
which couple glucose turnover to the production of pen-
toses and NADPH as reducing equivalents [70]. In fact, 
PPP generates NADPH and glyceraldehyde-3-phosphate 
starting from 6-phosphogluconate. These products have 
been shown to flow towards acetyl-CoA, and then to PHB 
biosynthesis in Cupriavidus necator, thanks to the induc-
tion of the same gnd and zwf genes [71, 72]. On the oppo-
site, acs and accA encoding for an acetyl-CoA synthetase 
and an acetyl-CoA carboxylase were strongly downregu-
lated in N-starved Synechocystis sp. B12 (Fig. 6D), as well 
as genes involved in fatty acid and phospholipid metabo-
lism (Additional file 3). This suggested that the B12 strain 
could remodel its metabolism to redirect the C present in 

(See figure on next page.)
Fig. 6 Schematic Synechocystis sp. metabolisms, with associated heatmaps. Heatmaps represent expression values for a set of significantly (p < 0.05) 
variable (LFC > 1) genes in the comparison B12 (−N vs +N) on the right, and the corresponding expression values in the comparison 6803 (−N vs 
+N) on the left. Differentially expressed genes are grouped according to the pathway: A photosynthesis, B carbon fixation, C nitrogen metabolism, 
D carbon metabolism and E PHB biosynthesis. Red shadows indicate upregulated genes while blue is used for downregulated genes, with the scale 
bar showing LFCs. * indicates p < 0.05, ** p < 0.01 and *** p < 0.001. PSII, photosystem II; PQ, plastoquinone; Cyt b6f, cytochrome b6f; PSI, photosystem 
I; Fd, ferredoxin; FNR, Fd-NADP+ oxidoreductase; Cyt bd, cytochrome bd; CCM, carbon concentrating mechanism; CBB cycle, Calvin–Benson–
Bassham cycle; PPP, pentose phosphate pathway; FBP, fructose 1,6-bis-phosphate; Ru5P, ribulose 5-phosphate; PHB, poly-hydroxy-butyrate 
biosynthesis; TCA cycle, tricarboxylic acid cycle; Gln, glutamine; Glu, glutamate; NiR/NaR, nitrite/nitrate reductases;  NH4, ammonium;  NO3, nitrate
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Fig. 6 (See legend on previous page.)
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glucose to pentoses instead of lipids, ultimately favouring 
PHB biosynthesis.

This was confirmed by expression levels of genes 
involved in PHB production (Fig. 6E). The PHB biosyn-
thetic pathway has three basic steps, which in Synecho-
cystis are catalysed by phaA, phaB and phaE/phaC genes 
[73]. While phaA was upregulated in both strains in N 
starvation, phaB and phaE were upregulated only in Syn-
echocystis sp. B12 (Fig.  6E), consistent with a stronger 
increase of PHB production (Fig. 3) [74].

Regulation of Synechocystis sp. B12 strain‑specific genes
Genome exploration of Synechocystis sp. PCC 6803 and 
B12 revealed 26 unique genes in B12 strain (Additional 
file  3), that were not detected in the reference strain. 
Among them, only two showed a significantly different 
gene expression (p < 0.05): GKLPKBBB_04043, encoding 
for a putative RNA polymerase-associated protein RapA 
and GKLPKBBB_04033, encoding for a putative endori-
bonuclease MazF, both induced in N starvation (Addi-
tional file  3). MazF is a well-characterised gene in the 
bacterium Escherichia coli, where it regulates cell growth 
in response to stresses [75, 76] and its activity could con-
tribute in B12 growth modulation in nutrients starvation.

Discussion
The research of new bio-based and biodegradable mate-
rials, specifically those having similar characteristics of 
traditional plastics, is attracting more attention in recent 
years in the quest of developing a more sustainable pro-
duction system. In this context, Synechocystis sp. B12 is 
an interesting organism because of its high-light resist-
ance and its ability to accumulate large amounts of PHB 
[27]. In this work, we describe how this strain can boost 
the PHB production in specific conditions, by analysing 
Synechocystis sp. B12 physiological, genomic and tran-
scriptomic features. Beyond its direct applicability as 
production strain, the comparison of Synechocystis sp. 
B12 with a less performing reference strain is instruc-
tive to identify molecular mechanisms responsible for 
high PHB accumulation and high-light tolerance, seminal 
for biotechnological improvements and also potentially 
applicable in other microorganisms.

In the assembled genome, number of coding sequences 
and proteins were slightly higher in Synechocystis sp. B12 
than the reference strain, which could be explained by 
the use of a more updated database for the annotation 
of B12 strain. Despite this, a few strain-specific genes 
were, however, identified (Additional file  2). Ribonucle-
ase vapC2, for instance, was present only in PCC 6803: 
this gene has been shown to be negatively associated with 
growth in E. coli, as its overexpression resulted in inhibi-
tion of bacterial growth [77]. This could suggest that the 

absence of vapC in Synechocystis sp. B12 may partially be 
responsible of its faster growth rate (Fig. 1).

Synechocystis sp. B12 has a more efficient response 
to high‑light
Unlike most cyanobacteria, Synechocystis sp. B12 demon-
strated a remarkable resistance to intense light exposure, 
with an enhanced growth and chlorophyll content in B12 
strain, coupled with a PHB production higher than the 
reference strain (Figs. 1, 2, 3). The high biomass produc-
tivity in high-light conditions makes this strain an advan-
tageous candidate for scaling up cultivation in outdoor 
industrial photobioreactors [78].

Transcriptional analysis deepened how the reorgani-
sation of the photosynthetic apparatus could explain 
these differences. Synechocystis has been already shown 
to downregulate phycobilisome-related genes as a strat-
egy to decrease light-harvesting ability [79–82]. In addi-
tion, PSII and PSI are usually downregulated in high-light 
[80–82], with only exception of psbA genes, well known 
to have a high turnover because of light induced dam-
age [83]. B12 carries out these responses more efficiently 
than the reference strain. Also, bicarbonate transporters, 
generally upregulated in high-light [80] were even more 
expressed in Synechocystis sp. B12, probably providing to 
cells more C supply that is highly helpful in reducing the 
perceived high-light stress by improving the capacity of 
using light energy for metabolisms [84].

In summary, both Synechocystis sp. B12 and the refer-
ence strain PCC 6803 exhibited similar responses to high-
light conditions. However, B12 strain’s superior growth in 
high-light could be attributed to a faster or more efficient 
response, rather than a different mechanism.

N starvation affects Synechocystis sp. B12 transcriptional 
regulation of photosynthesis
Transcriptomic analysis shed light on the different met-
abolic remodelling triggered by N starvation between 
strains. As expected, N depletion strongly affected pho-
tosynthesis, with most genes significantly downregulated 
in both strains. In fact, during starvation, light-harvest-
ing complexes are degraded and photosynthetic activity 
declines together with the breakdown of thylakoid mem-
branes [20, 85, 86]. This downregulation was strongly 
evident for genes encoding structural subunits of phy-
cobilisomes, cytochrome b6f and PSI. This response was 
confirmed from previous transcriptomic analyses pre-
viously performed in N starvation conditions [87, 88], 
who cultured Synechocystis sp. PCC 6803 at illumina-
tion intensity of 70 μmol photons  m−2  s−1, but is in con-
trast with others [89], who used lower light intensity, at 
45  μmol  photons   m−2   s−1, indicating the marked influ-
ence of light on N starvation response.
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The expression of isiAB operon was strongly regu-
lated in Synechocystis sp. B12 (Fig.  6). Its transcription 
is known to be induced by iron starvation [65] but also 
other stress conditions [90, 91]. Over the years, extensive 
research was done on these genes, showing that the isiA 
product probably protects PSI from excessive excitation, 
but their function has not been clearly determined [66, 
92–94]. The strong regulation of isiA and isiB in Synecho-
cystis sp. B12 N-starved cells suggests that photoprotec-
tion mechanisms act differently in this strain as compared 
to PCC 6803. An interpretation for isiA downregulation 
of B12 strain, in high-light N starvation, could be linked 
to the overall decrease of PSI in these cells. In fact, high 
levels of isiA transcription are induced by strong illumi-
nation in N-replete cells, which possess a huge IsiA pool 
not always coupled to PSI [66, 90, 95]. In N starvation, 
with the downregulation of genes encoding PSI subu-
nits and the consequent decrease in their content, there 
should be less need of IsiA antennas: this could result 
in isiA downregulation, with all IsiA produced coupled 
to PSI and a beneficial redirection of N and C resources 
to other pathways, similarly to the coupled decrease of 
PSII and phycobilisomes [90]. Results suggests that this 
regulation should be more flexible and efficient in Syn-
echocystis sp. B12, and probably is one of the reasons of 
its success in N starvation when acclimated to high-light 
conditions.

Synechocystis sp. B12 applies different N assimilation 
strategies to overcome N limitation
N starvation strongly affects N metabolism, from the 
uptake of N compounds to the assimilation into amino 
acids [88, 89]. We observed a general downregulation of 
genes involved in translation and protein synthesis in N 
deprivation, as previously reported [88, 89].

Strong changes in transcript levels were observed for 
genes involved in N uptake and metabolism, similarly 
to previous studies [89]. In fact, Synechocystis cells often 
induce the high-affinity nitrate uptake system under 
N limited conditions [88]. This was true for PCC6803 
but not for the B12 strain, which instead upregulated 
ammonium and amino acid transporters. This metabolic 
remodelling suggests a different physiological strategy 
in the two strains in response to N starvation, with Syn-
echocystis sp. B12 investing no longer on residual nitrate 
uptake but rather on other N sources.

This strategy could be associated with different envi-
ronmental conditions and adaptation to different N 
sources in their cultivation environment. Being Synecho-
cystis sp. B12 an isolated strain from a polluted area, it 
could have been exposed to ammonium-rich conditions. 
In fact, polluted areas are often abundant in N com-
pounds, such as ammonia, nitrous oxides and nitrogen 

oxide, which can lead to a range of environmental issues 
like eutrophication [96]. Irrespective from the evolu-
tionary reason, this property could be valuable enabling 
the B12 strain a better ability to recycle amino acids 
and other N products instead of degrading intracellu-
lar protein during N starvation [67, 68]. In addition, the 
direct uptake of amino acid has already been shown to 
be upregulated in different microorganisms to sustain 
the GS-GOGAT cycle and to maintain the amino acids’ 
metabolism in N starvation [20].

Synechocystis sp. B12 upregulates PHB biosynthesis in N 
starvation
In the context of large-scale cultivation, productivity is a 
multifaceted outcome determined both by the biomass 
and the content of the desired product [27], in this case 
PHB. This study revealed a significant increase in PHB 
accumulation in Synechocystis sp. B12 under high-light 
and N depletion. In particular, N starvation is known to 
induce chlorosis and protein degradation [21, 26, 97], 
because of the need to remobilize the N present in bio-
molecules such as pigments and amino acids [88] and to 
store energy in forms of reduced carbon molecules not 
containing N, such as glycogen and PHB. Synechocystis 
sp. B12 showed a superior capacity to PHB accumulation, 
making it an interesting strain to identify the molecular 
determinants for this ability.

The two Synechocystis strains showed a different regu-
lation of pathways involved in C metabolism, and in 
particular in PHB biosynthesis, under nutrient starva-
tion. After C incorporation into glucose through the 
Calvin–Benson–Bassham (CBB) cycle, intermediates of 
carbohydrate metabolism increase at the beginning of 
N starvation and gradually decrease during prolonged 
starvation [20]. Synechocystis can catabolize glucose via 
two parallel operating pathways: the glycolysis and the 
PPP. The latter is strongly linked with PHB production, 
providing C skeletons and reducing equivalents needed 
for PHB biosynthetic pathway [21]. The strong induc-
tion of PPP-related genes in N-starved Synechocystis sp. 
B12, together with the upregulation of PHB biosynthetic 
pathway, suggests that this strain could be more efficient 
in directing C from carbohydrates towards acetyl-CoA 
and then to PHB. This is also supported by the down-
regulation of acetyl-CoA downstream reactions in B12 
N-starved cells, suggesting the remodelling of its metab-
olism to reduce lipid biosynthesis and to favour C incor-
poration into pentoses. Together, these data indicate that 
B12 should be more flexible in adjusting its metabolism 
by favouring PHB accumulation, through the metaboliza-
tion of pentoses, similar to what previously seen in bacte-
ria and microalgae [98, 99].
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Conclusions
Our study revealed a higher production of PHB in Syn-
echocystis sp. B12 strain than the reference strain, par-
ticularly under high-light and N-starved conditions. 
Even if few differences were observed at genome level, 
many interesting alterations in the expression of cru-
cial genes for photosynthesis, N and C metabolism 
were described. This calls for an ongoing adaptation 
of the B12 strain, influenced by environmental factors 
in its natural habitat. These conditions likely triggered 
regulatory responses, shaping gene expression without 
necessarily altering the genome, as part of an adaptive 
process to specific environmental conditions.

These findings not only deepen our understanding of 
responses favouring PHB production in B12, but also 
indicate potentially broad applications extendable to 
other organisms. Our research sets the groundwork 
for future practical implementations, emphasising how 
these discoveries can make a big impact on eco-friendly 
development of novel bioplastics.
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